首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outbreaks of bark beetles and drought both lead to concerns about increased fire risk, but the relative importance of these two factors is the subject of much debate. We examined how mountain pine beetle (MPB) outbreaks and drought have contributed to the fire regime of lodgepole pine forests in northwestern Colorado and adjacent areas of southern Wyoming over the past century. We used dendroecological methods to reconstruct the pre-fire history of MPB outbreaks in twenty lodgepole pine stands that had burned between 1939 and 2006 and in 20 nearby lodgepole pine stands that were otherwise similar but that had not burned. Our data represent c. 80% of all large fires that had occurred in lodgepole pine forests in this study area over the past century. We also compared Palmer Drought Severity Index (PDSI) and actual evapotranspiration (AET) values between fire years and non-fire years. Burned stands were no more likely to have been affected by outbreak prior to fires than were nearby unburned stands. However, PDSI and AET values were both lower during fire years than during non-fire years. This work indicates that climate has been more important than outbreaks to the fire regime of lodgepole pine forests in this region over the past century. Indeed, we found no detectable increase in the occurrence of high-severity fires following MPB outbreaks. Dry conditions, rather than changes in fuels associated with outbreaks, appear to be most limiting to the occurrence of severe fires in these forests.  相似文献   

2.
Many temperate woodpecker species are thought to be highly conservative in their fecundity with little response to fluctuations in availability of resources. In a 15-year field study in interior British Columbia, we evaluated responses in abundance and fecundity of six species of resident and migrant woodpeckers (downy woodpecker [Picoides pubescens], hairy woodpecker [Picoides villosus], American three-toed woodpecker [Picoides dorsalis], pileated woodpecker [Drycopus pileatus], northern flicker [Colaptes auratus], and red-naped sapsucker [Sphyrapicus nuchalis]) to a large-scale outbreak of mountain pine bark beetles that resulted in a strong positive pulse in food supply. Population densities of woodpecker species increased during outbreak years. Despite the year-round multi-annual increase in food resources, and in contrast to the strong increases in fecundity shown by nuthatches and chickadees, annual fecundity (as indicated by clutch size and number of nestlings that fledged) did not change for any woodpecker species over the study. Similarly, we found no changes in fecundity in response to selective forest harvesting despite numerical increases for woodpeckers at these sites. Our study confirms that these woodpecker species are conservative in their reproductive investment patterns even during strong multi-annual increases in food. Our findings indicate woodpecker populations are regulated numerically through variable survival and/or greater immigration rates, which can result in higher breeding densities temporarily during resource pulses.  相似文献   

3.
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in lodgepole pine (Pinus contorta var. latifolia) forests of the Greater Yellowstone Ecosystem (WY, USA) across a 0-30 year chronosequence of time-since-beetle disturbance. Recent (1-4 years) bark beetle disturbance increased total litter depth and N concentration in needle litter relative to undisturbed stands, and soils in recently disturbed stands were cooler with greater rates of net N mineralization and nitrification than undisturbed sites. Thirty years after beetle outbreak, needle litter N concentration remained elevated; however total litter N concentration, total litter mass, and soil N pools and fluxes were not different from undisturbed stands. Canopy N pool size declined 58% in recent outbreaks, and remained 48% lower than undisturbed in 30-year old outbreaks. Foliar N concentrations in unattacked lodgepole pine trees and an understory sedge were positively correlated with net N mineralization in soils across the chronosequence. Bark beetle disturbance altered N cycling through the litter, soil, and vegetation of lodgepole pine forests, but changes in soil N cycling were less severe than those observed following stand replacing fire. Several lines of evidence suggest the potential for N leaching is low following bark beetle disturbance in lodgepole pine.  相似文献   

4.
The southern pine beetle (Dendroctonus frontalis, SPB) is the major insect pest of pine species in the southeastern United States. It attains outbreak population levels sufficient to mass attack host pines across the landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis selected and examined the best climatic and landscape variables for predicting infestations at regional scales. The analysis showed that, for a given county, the most important factor in predicting outbreaks was that the county was classified as in outbreak status in the previous year. Other important factors included minimum winter temperature and the greatest difference between the average of daily minimums and a subsequent low temperature point, precipitation history either seasonally in the previous year or difference from average over the previous 2 years, the synchronizing effect of seasonal temperatures on beetle populations and the relative percentage of total forest area composed of host species. The statistical models showed that climatic variables are stronger indicators of outbreak likelihood than landscape structure and cover variables. Average climatic conditions were more likely to lead to outbreaks than extreme conditions, supporting the notion of coupling between a native insect and its native host. Still, some extreme events (i.e., periods of very low temperature or very high precipitation) did precede beetle infestation. This analysis suggested that there are predisposing and inciting factors at the large scale but the driving factors leading to individual infestations operate at smaller scales.  相似文献   

5.
The mountain pine beetle Dendroctonus ponderosae Hopkins is endemic to lodgepole pine, Pinus contorta var. latifolia Engelmann, forests in western Canada. However, the current beetle epidemic in this area highlights the challenges faced by forest managers tasked with prioritizing stands for mitigation activities such as salvage harvesting and direct control methods. In western Canada, the operational risk rating system for mountain pine beetle is based on biological knowledge gained from a rich legacy of stand-scale field studies. Due to the large spatial (millions of hectares affected) and temporal (over 10 years) extents of the current epidemic, new research into large-area mountain pine beetle processes has revealed further insights into the landscape-scale characteristics of beetle infested forests. In this paper, we evaluated the potential for this new knowledge to augment an established system for rating the short-term risk of tree mortality in a stand due to mountain pine beetle. New variables explored for utility in risk rating include direct shortwave radiation, site index, diameter at breast height, the temporal trends in local beetle populations, Biogeoclimatic Ecosystem Classification and beetle–host interaction variables. Proportional odds ordinal regression was used to develop a model for the Vanderhoof Forest District in west-central British Columbia. Prediction on independent data was assessed with the area under the receiver operator curve (AUC), indicating good discriminatory power (AUC = 0.84) for predicting levels of mountain pine beetle-caused pine mortality.  相似文献   

6.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

7.
Species choice is potentially an important management decision for increasing carbon stocks in forest ecosystems. The substitution of a slow-growing hardwood species (Quercus petraea) by a fast-growing conifer plantation (Pinus nigra subsp. laricio) was studied in central France. Simulations of carbon stocks in tree biomass were conducted using stand growth models Fagacées for sessile oak and PNL for Corsican pine. The changes in soil carbon were assessed using the Century model and data from two European soil monitoring networks: 16 km × 16 km grid and RENECOFOR. Carbon in wood products was assessed with life cycle analysis and lifespan of final products. However, only carbon stocks and their variation were accounted for: effects of energy-consuming materials or fossil fuel substitution are excluded from the analysis. To compare the growth of these two types of forest stands, an important part of the study was to assess the productivity of both species at the same site, using National Forest Inventory data.  相似文献   

8.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

9.
Large wildfire events in coniferous forests of the western United States are often followed by postfire timber harvest. The long-term impacts of postfire timber harvest on fire-associated cavity-nesting bird species are not well documented. We studied nest-site selection by cavity-nesting birds over a 10-year period (1994–2003), representing 1–11 years after fire, on two burns created by mixed severity wildfires in western Idaho, USA. One burn was partially salvaged logged (the Foothills burn), the other was primarily unlogged (the Star Gulch burn). We monitored 1367 nests of six species (Lewis’s Woodpecker Melanerpes lewis, Hairy Woodpecker Picoides villosus, Black-backed Woodpecker P. arcticus, Northern Flicker Colaptes auratus, Western Bluebird Sialia mexicana, and Mountain Bluebird S. currucoides). Habitat data at nest and non-nest random locations were characterized at fine (field collected) and coarse (remotely sensed) spatial scales. Nest-site selection for most species was consistently associated with higher snag densities and larger snag diameters, whereas wildfire location (Foothills versus Star Gulch) was secondarily important. All woodpecker species used nest sites with larger diameter snags that were surrounded by higher densities of snags than at non-nest locations. Nests of Hairy Woodpecker and Mountain Bluebird were primarily associated with the unlogged wildfire, whereas nests of Lewis’s Woodpecker and Western Bluebird were associated with the partially logged burn in the early years after fire. Nests of wood-probing species (Hairy and Black-backed Woodpeckers) were also located in larger forest patch areas than patches measured at non-nest locations. Our results confirm previous findings that maintaining clumps of large snags in postfire landscapes is necessary for maintaining breeding habitat of cavity-nesting birds. Additionally, appropriately managed salvage logging can create habitat for some species of cavity-nesting birds that prefer more open environments. Our findings can be used by land mangers to develop design criteria for postfire salvage logging that will reserve breeding habitat for cavity-nesting birds.  相似文献   

10.
光肩星天牛幼虫排粪规律调查   总被引:1,自引:0,他引:1       下载免费PDF全文
天牛幼虫排出的虫粪在指示天敌寻找寄主的过程中起着重要的作用。通过在光肩星天牛幼虫发生期定期收集幼虫虫粪的方法,首次研究了林间天牛幼虫排粪量的变化规律。结果显示,光肩星天牛成虫羽化前,排粪总量呈现由上升到下降的过程,单个排粪孔的日平均排粪量为(0.030 2±0.002 1)g,单排粪孔的日最大排粪量可以达到0.319 4 g。同时研究了幼虫排粪量与寄主树的胸径、树皮厚度、树皮含水量和排粪孔大小的关系,结果表明,在调查期内,无论是各个排粪孔的排粪总量还是日均最大排粪量,均与排粪孔的大小有直接关系,而与其他几个因子无关。通过在树干上缠绑胶带形成的微栖境,采集到了光肩星天牛的天敌花绒寄甲成虫,表明花绒寄甲的发生与寄主天牛的发生紧密相关。  相似文献   

11.
Mature shrubs can provide microhabitats that are beneficial to tree seedling growth and development. Sugar pine trees (Pinus lambertiana) grow in a narrow zone on the eastern slope of the Carson Range in extreme western Nevada, whereas Jeffrey pine (Pinus jeffreyi) is the dominant tree species in the region, an area extensively disturbed by wild fire. This study compares seedling establishment of sugar pine and Jeffrey pine relative to mature shrubs. In the fall of 2002 (cohort 1) and 2003 (cohort 2), 13,600 seeds of both species were planted in wire mesh enclosures, at three sites, under a variety of microhabitat treatments: under shade and in the open, under two species of shrub cover, and with and without plant litter. Seedlings were monitored for survival through two growing seasons. Even though more sugar pine seedlings emerged, more Jeffrey pine seedlings survived, and Jeffrey pine was the more drought tolerant species, better suited for the xeric climate found in the Carson Range. Litter slightly hindered seedling emergence but had no effect on survival and there was no significant species × litter interaction. Supplemental water facilitated survival in all treatments with highest survival in shade treatments. Sugar pine seedlings showed a significant increase in survival over Jeffrey pine seedlings with the addition of water, particularly in open treatments and more of both species survived under manzanita shrubs with water. The highest seedling mortality occurred when shrub canopy was removed, and seedlings experienced the effect of full sun and competition for soil water. For either species, microhabitat is a significant factor in determining success or failure in rehabilitation efforts after disturbance.  相似文献   

12.
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine (Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and seasons. Using a completely randomized block design, we assigned one of the following treatments to 12, 9.3-ha plots: removal (n = 3; all CWD ≥ 10 cm in diameter and ≥60 cm long removed), downed (n = 3; 5-fold increase in volume of down CWD), snag (n = 3; 12-fold increase in standing dead CWD), and control (n = 3; unmanipulated). Therein, we sampled shrews during winter, spring, and summer seasons, 2003–2005, using drift-fence pitfall arrays. During 1680 drift-fence plot nights we captured 253 Blarina carolinensis, 154 Sorex longirostris, and 51 Cryptotis parva. Blarina carolinensis capture rate was greater in control than in snag treatments. Sorex longirostris capture rate was lower in removal than downed and control plots in 2005 whereas C. parva capture rate did not differ among treatments. Overall, the CWD input treatments failed to elicit the positive soricid response we had expected. Lack of a positive response by soricid populations to our downed treatments may be attributable to the early CWD decay stage within these plots or an indication that within fire-adapted pine-dominated systems of the Southeast, reliance on CWD is less than in other forest types.  相似文献   

13.
A high incidence of Diplodia shoot blight (site means ranging 85-100%) was observed on recently planted red pine (Pinus resinosa) seedlings where mature red pine stands previously had been clearcut. An investigation of the potential of harvest debris as a source of inoculum of Diplodia pathogens then was conducted. Cones, bark, needles, stems from shoots bearing needles, and stems from shoots not bearing needles (both suspended above the soil and in soil contact) were collected from harvest debris left at sites where clearcutting occurred. Conidia were quantified, and their germination rate was assessed, and Diplodia species were identified using PCR. Conidia of Diplodia species were found at all study sites and conidia counts increased from samples collected from 6 to 18 months after harvest. Germinable conidia were obtained from debris collected 6 months to 5 years after harvest. Fewer conidia were obtained from debris collected at intervals of up to 4-5 years after harvest and the percentage of germinable conidia was lower after longer intervals following harvest. More conidia were obtained and a greater percentage germinated from debris collected above the soil than from debris in soil contact. The host substrate also influenced the number of conidia and the percentage that germinated. Planting red pine seedlings next to debris infested with Diplodia pathogens could provide a persistent source of inoculum. Results should prompt further consideration by land managers and researchers of the potential forest health risks, in addition to benefits, that may be associated with harvest debris.  相似文献   

14.
Forest recruitment is the outcome of local- and regional-scale factors such as disturbances and climate. The relative importance of local- and regional-scale factors will determine the spatial scale at which temporal pulses of recruitment occur. In seasonal tropical forests, where the annual dry-season is a critical bottleneck to seedling survival, multi-year periods of relatively cool, wet dry seasons may be required for successful tree recruitment. Consequently, when such conditions are present, region-wide synchronisation of recruitment may occur. To examine the case for regional synchronisation of forest dynamics in the seasonal tropical pine forests of northern Thailand, we investigated forest age structures at three spatial scales: stand, site and region. We compared forest age structures with instrumental climatic records beginning in 1902. We found significant statistical evidence of synchronous recruitment at the stand- and site-scales, but not at the regional-scale. While correlations between recruitment and climate were not statistically significant, recruitment success was often linked to favourable climatic conditions. For example, recruitment at all sites was associated with multi-year periods of cool-wet dry seasons. The lack of significant correlations between recruitment and climate appears to reflect complex interactions among local disturbance history, regional climate variability and pine recruitment.  相似文献   

15.
We studied heartwood and sapwood variation in western redcedar (Thuja plicata) at three sites, including a 95-year-old naturally regenerated, unmanaged stand, a 35-year-old planted spacing trial, and a 30-year-old naturally regenerated stand to which thinning and fertilization treatments had been applied. In the 95-year-old stand, we studied within-tree variation in heartwood and sapwood. In the thinning/fertilization trial and the planted spacing trial, we studied effects of cultural practices and growth rate on heartwood and sapwood. In the trees that we studied, sapwood width was generally fairly narrow, rarely exceeding 3.5 cm. Heartwood formation in western redcedar appeared to begin at a relatively small stem diameter (7 cm) and at a young age, probably 10–15 years. The amount and proportion of heartwood increased with distance downward from the top of the tree, with the implication that older trees will contain a greater proportion of heartwood than younger trees. For any given age, it appears that cultural treatments that favor rapid growth will result in stems with greater amounts of both sapwood and heartwood, and a greater proportion of heartwood.  相似文献   

16.
Red-shouldered hawks (Buteo lineatus) are threatened in Wisconsin and when nest sites are found during the cruising or marking stage of timber harvesting, the harvest is altered to accommodate the hawks. If nest site locations are known before initiation of timber harvest, foresters can employ a proactive approach to manage red-shouldered hawks while maintaining timber production. We searched for red-shouldered hawks nest sites on Marinette County Forest (MCF) which encompasses 94,000 ha in northeastern Wisconsin and is the second largest county forest in the state. We used a comparative modeling approach to evaluate distribution and habitat relationships of red-shouldered hawk nest sites in relation to a suite of environmental variables in MCF. Models were used to develop forest management recommendations for red-shouldered hawks in Wisconsin. During the spring of 2006 and 2007, we broadcasted conspecific calls to survey 1121 calling stations along forest roads and trails. We located 20 and 25 active nesting territories in 2006 and 2007, respectively (11 of which were active in both years). To understand nest site selection, we measured 22 habitat variables within 0.04-ha plots at active nest sites (n = 34) and at stratified random sites (n = 61). Logistic regression with information-theoretic model selection identified a model including greater tree species richness and closeness to forested wetland as the best-approximating model. Variable selection with Discriminant Function Analysis (DFA) indicated that nest selection was best explained by greater number of tree species, closer distance to forested wetlands, greater volume of downed woody debris, fewer small sawlogs, and increased proximity to streams. Univariate comparisons identified four of the five aforementioned variables in the DFA model as significant. Red-shouldered hawks are likely more common in Wisconsin than their state status suggests. Forest management for red-shouldered hawk nest sites should focus on increasing tree species richness, increasing down woody debris volume, and protecting forested wetlands. These recommendations may assist property managers to locate and plan for continued persistence of this species on MCF.  相似文献   

17.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

18.
Insect outbreaks affect forest structure which may have significant effects on the habitat of other animals. Forest-dwelling insectivorous bats are likely affected by associated changes in the abundance of roost trees and insect prey, altered foraging and flying efficiency, and predation risk. We examined the short-term effects (3-13 years post-infestation) of an outbreak of spruce beetles (Dendroctonus rufipennis) on the habitat use of little brown bats (Myotis lucifugus) in the boreal forest of the southwestern Yukon, Canada. We measured bat activity, using Anabat II bat detectors, in 90 forested stands that had experienced from 0 to 90% tree mortality due to spruce beetles. We used generalized linear models to assess whether bat activity varied with tree mortality, season, tree density, canopy closure, or distance to the nearest lake or town. Bat activity did not vary significantly with tree mortality, season, or canopy closure, but decreased with increasing tree density. Bat activity was significantly greater in areas close to both the nearest lake and nearest town, and was low in areas that were far from either. Our results indicate that in the short-term, habitat use by little brown bats was not related to the severity of spruce beetle infestation, but suggest that in the long-term, bats may be positively affected by decreased tree density as beetle-killed trees fall down.  相似文献   

19.
The purpose of this study was to develop models for estimating yields of lumber grades and by-products of individual Scots pine (Pinus sylvestris L.) trees using stem and crown dimensions as explanatory variables. Two separate data sets were used: (1) one simulated by the process-based growth model, PipeQual, which provides information about stem form and branch properties. The model was used to predict the 3D structure of Scots pine stems from thinning regimes of varying intensity and rotation periods and (2) an empirical data set with detailed 3D measurements of stem structure. The stems were sawn using the WoodCim sawing simulator and the yields and grades of the individual sawn pieces, as well as by-products, were recorded. The sawn timber was classified on A, B, C and D-grades for side and centre boards separately (Nordic Timber grading). By-products were pulpwood, sawmill chips, sawdust and bark.  相似文献   

20.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号