首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coarse woody debris (CWD) has become recognised as an important component of the carbon (C) pool in forest ecosystems. In Ireland, managed Sitka spruce (Picea sitchensis (Bong) Carr.) forests account for 52.3% of the total forest estate. To determine the stock and decay dynamics of above and belowground CWD, field surveys using fixed area sample plots, were conducted in six even-aged Sitka spruce stands, representing the young, intermediate and mature stages of a typical commercial rotation. The volume, mass, density loss and C:N ratio of all CWD types (logs, stumps, and coarse roots) were determined using a five-decay class (DC) system. The decay rates and half life of CWD was also determined. To estimate CWD coarse root mass; roots associated with stumps classified in different decay classes were excavated. The coarse roots were categorised into small (2-10 mm), medium (10-50 mm) and large (>50 mm) diameter classes.CWD C-mass ranged from 6.98 to 18.62 Mg ha−1 and was highest in an intermediate forest (D35), while the aboveground volume varied from 6.31 to 42.27 m3 ha−1. Coarse roots accounted for 21% to 85% of the total CWD C-pool in the surveyed stands. The total CWD C-mass was poorly correlated with the number of thinning events (R2 = 0.29), when data from D35 was excluded. The density loss was significant in logs (45%), stumps (58%), and small- (38%), medium- (50%) and large roots (38%) as decay progress from DC 0 to 4. There was a 46%, 41%, 51%, 72% and 57% decline in C:N ratio of logs, stumps, small-, medium- and large roots, respectively, as decay progressed from DC 0 to 4. The density decay rates were 0.059, 0.048 and 0.036 kg m−3 year−1 for logs, stumps and coarse roots, respectively. The size classification of roots did not significantly affect their decay rate. The half life (50% decomposition) of CWD was estimated has 12-, 14- and 19 years for logs, stumps and roots of Sitka spruce. Regression curves showed a strong correlation between the density and C:N ratio (R2 = 0.69, 0.74 and 0.93 for logs, stumps and coarse roots, respectively). The long term storage of C and its slow rate of decomposition make CWD a vital structural and functional component of the CWD C-pool and a major controller of forest ecosystem C-retention.  相似文献   

2.
We used pine (Pinus elliottii Engelm.) forests located along a short urban–rural gradient in Nanchang, China to study nitrogen (N) cycling responses to urbanization. Annual average rates of nitrification and net N-mineralization in soils (0–15 cm depth) measured from February 2007 to January 2009 increased from rural (8 and 37 kg ha−1 year−1) to suburban (69 and 79 kg ha−1 year−1) and urban sites (114 and 116 kg ha−1 year−1) (P < 0.05). Soil nitrate and mineral N pools exhibited the same spatial patterns in response to urban location. In comparison to rural sites, urban and suburban sites experienced soil microbial biomass N that increased by 98% and 38%, sucrase activity that increased by 40% and 26%, and urease activity that decreased by 35% and 25%, respectively. Soil microbial biomass C:N and free amino acids varied little along the urban–rural gradient. Foliar N concentrations and N resorption proficiencies were higher in urban (12.3 and 4.8 g kg−1) and suburban (12.3 and 6.2 g kg−1) than in rural (9.9 and 3.6 g kg−1) sites, while N resorption efficiencies (from 58% to 72%) were not statistically different. These results indicate that forests in suburban and especially in urban areas are moving rapidly towards a state of “N saturation” and increased potential N loss most likely attributable to higher N deposition to these sites.  相似文献   

3.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

4.
Countries that are signatories to the UNFCCC and its supplementary Kyoto Protocol are obliged to report changes in carbon pools. These should include the pool of carbon held in tree stumps and roots but, to date, few countries have been able to report this or separate it from the dead-wood pool. The aim of this study was to develop a general system for estimating and monitoring changes in stump system carbon using data from a traditional National Forest Inventory. The system was derived using data based on measurements of carbon (biomass) in inventoried permanent sample plots representing all relevant classes of land-use. With this design it was possible to trace matched carbon at the level of individual trees or stumps back to land-use prior to the 1990 baseline year. Between 1990 and 2003 in Sweden, the average annual net sink of stump systems was estimated to amount to 6.7 Mt CO2 equiv. year−1 – comparable to the reported net sink in 2008 of about 15 Mt CO2 equiv. year−1 from the whole Land Use, Land-Use Change and Forestry sector, which excluded any carbon in stump systems. In 2003 the carbon stock of stumps and roots was estimated at 495 Mt CO2 equiv.; approximately five times that of the dead-wood pool as defined in Sweden, i.e. dead wood that mainly consists of boles. The Intergovernmental Panel on Climate Change requests that reported carbon should be matched to land-use and traced back to the 1990 base year; however, the present study confirms expectations that most carbon in stumps and roots is found on Forest land. The minimum requirements for estimating the carbon pool in stump systems at a national scale using the proposed methodology are that there should be: (i) a consistent time-series of harvest data, usually estimated as merchantable volume; (ii) conversion factors from merchantable volume to stump system biomass at death; and (iii) a representative decomposition model.  相似文献   

5.
Clear-cutting followed by mechanical site preparation is the major disturbance influencing nutrient and water fluxes in Fennoscandian boreal forests. The effects of soil harrowing on the fluxes of dissolved organic carbon (DOC), dissolved nitrogen compounds (organic N, NH4+ and NO3) and water soluble phosphorus (PO43−) through a podzolic soil were studied in a clear-cut in eastern Finland for 5 years. The old, mixed coniferous stand was clear-cut and stem only harvested in 1996 followed by soil harrowing in 1998 and planting in June 1999. Zero-tension lysimeters were used to collect soil water from below different soil horizons in the three types of microsites that resulted from site preparation treatment: low ridges (25% of clear-cut area), shallow furrows (30%) and the undisturbed soil (45%). After soil harrowing, the leaching of DOC, N and P from below the B-horizon increased compared to pre-treatment levels. However, the increases were short-lasting; 1–2 years for inorganic N and P, and 5 years for DOC and organic N. The highest concentrations were associated with the ridges and lowest with the furrows, reflecting the differences in amount of organic matter present in each microsite type and, for N, to enhanced mineralization and nitrification. Leaching from below the B-horizon over the 5 years following soil harrowing for the whole clear-cut area was 36.5 kg ha−1 for DOC, 0.88 kg ha−1 for NH4-N, 0.46 kg ha−1 for NO3-N, 1.24 kg ha−1 for organic N and 0.09 kg ha−1 for PO4-P. Site preparation increased temporarily the risk for nutrient leaching into watercourses and groundwater from the clear-cut area but soil fertility was not affected since the leached amounts remained small. The main reasons for the observed low leaching values were the rapid recovery of ground vegetation and low N deposition loads.  相似文献   

6.
In the Eden area in NSW, Australia, low fertility granitic surface soils were sampled from 156 sites and analysed for pH, organic C, total N, total P, available P, exchangeable bases and exchangeable Al. Fifty eight of these sites were also sampled to a depth of 40 cm. Time since fire ranged from 1 to 39 years and was used in the analysis as a surrogate for fire frequency. No information was available on fire intensity. No significant relationships were found between time since fire and P or base cations. However, the quantities of organic matter and total N (kg ha−1), and the C/N ratio were significantly related to both time since fire alone and to the combination of time since fire and soil total P. Based on these relationships, it was estimated that there were average net increases of between 11 and 21 kg N ha−1 year−1 in surface soil, the actual quantity depending on the level of soil total P. There was little change in N in the initial 10 years after fire and there was a peak in N accumulation about 24 years after fire. The C/N ratio and surface soil pH decreased with time since fire. Accumulation of N and reductions in pH and C/N ratio were studied further in a small scale paired plot analysis. The repeatedly burnt plots had lower levels of both litter and understorey and the overstorey trees generally had healthier crowns than in the unburnt plots. The differences between the repeatedly burnt and the unburnt plots matched the models developed from the general survey. There were no significant changes in the C/N ratio, but the unburnt sites had higher levels of extractable mineral N and the relationships between the mineral N and the C/N ratio for burnt and unburnt sites were statistically significant. The quantities of extractable mineral N in the unburnt soils (2.3 kg N ha−1) were about twice the levels in the burnt soils (1.2 kg N ha−1). The pH of the surface soil (4.4 in 1:1 water) in the regularly burnt area was higher than in the unburnt area (pH 4.1) and the exchangeable aluminium also differed (0.62 c mol−1 in the burnt area and 1.3 c mol−1 in the unburnt). The combined data indicate that changes occur in forest soils when there is a long period of exclusion of fire. It is suggested that these changes generally lead to secondary changes, such as in pH and availability of other elements such as aluminium. The study highlights a number of issues including the rates of inputs of N to the system and the question of N saturation and its long term interaction with plant species. It is hypothesised that reduced burning leads to increased N availability and other soil changes which negatively impact on tree health.  相似文献   

7.
The biomass and decomposition of coarse woody debris (CWD, ≥10 cm in diameter) were studied in a monsoon evergreen broad-leaved old-growth forest in Dinghushan Nature Reserve, Southern China. The study examined the biomass of CWD from 1992 to 2008 and decomposition of three dominant tree species CWD (Castanopsis chinensis, Cryptocarya concinna, Schima superba) from 1999 to 2008. Changes in the wood density of three tree species’ CWD were used to estimate the decay rates with a single exponential model. The results showed that the biomass of CWD in the old-growth forest was increasing from 17.41 tonnes ha−1 (t ha−1) in 1992 to 38.54 t ha−1 in 2008, and a higher decay constant was observed for C. concinna (0.1570 – 19 years for 95% mass loss); the decay rates of S. superba and C. chinensis were 0.1486 (20 years for 95% mass loss) and 0.1095 (27 years for 95% mass loss), respectively. The difference in decay constant rates may be due to their substrate quality and decomposers. The content of carbon (C) in three species declined after 9 years of decay. Nitrogen (N) content increased in all species with decay. The C/N ratio in the three species declined during the decay process.  相似文献   

8.
A trial in an 11-year-old stand of radiata pine (Pinus radiata D. Don) was used to analyse the effects of accelerated loss of nutrients from the site on forest productivity and nutrient status. Raking of litter was undertaken over 14 years prior to thinning, then for 2 years after thinning at which time the trial was destroyed in a wind storm. The experimental design was a factorial of three main treatments: (i) removal (raking) versus nil removal of the forest floor, (ii) replacement or non replacement of nutrients to adjust for imbalances between nutrients in litter and those in the tree stem, and (iii) complete replacement (or not) of all nutrients removed in the litter. Additionally, a small trial was incorporated to address components of physical aspects of litter removal by comparing raking with ‘raking and a cover of woven plastic mesh’. Raking and nutrient additions were carried out approximately every 6 months.Over the study period, the raking treatment removed about 75 Mg ha−1 of organic material with contained nutrients (559 kg ha−1 of N, 68 kg ha−1 of P, 323 kg ha−1 of Ca, 91 kg ha−1 of Mg, 243 kg ha−1 of K, 0.9 kg ha−1 of B) and this related to about four normal sawlog harvests or one total tree harvest. Up to the time of thinning, raking reduced basal area increment by 25% while raking together with replacement of nutrients reduced this by about 12%. Nutrient additions to unraked plots led to increases of up to 14% in basal area increment. The raking treatment reduced foliage nitrogen and this was correlated with reduced growth while other nutrients such as boron and sulphur were reduced but not to a degree to affect growth or health. The results were used to assess the effects on soil nutrient status and growth of different harvesting regimes (wood only, wood plus bark, total tree).  相似文献   

9.
The growth, aboveground biomass production and nutrient accumulation in black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations during 7 years after planting were investigated on reclaimed oil shale mining areas in Northeast Estonia with the aim to assess the suitability of the studied species for the reclamation of post-mining areas. The present study revealed changes in soil properties with increasing stand age. Soil pH and P concentration decreased and soil N concentration increased with stand age. The largest height and diameter of trees, aboveground biomass and current annual production occurred in the black alder stands. In the 7-year-old stands the aboveground biomass of black alder (2100 trees ha−1) was 2563 kg ha−1, in silver birch (1017 trees ha−1) and Scots pine (3042 trees ha−1) stands respective figures were 161 and 1899 kg ha−1. The largest amounts of N, P, K accumulated in the aboveground part were in black alder stands. In the 7th year, the amount of N accumulated in the aboveground biomass of black alder stand was 36.1 kg ha−1, the amounts of P and K were 3.0 and 8.8 kg ha−1, respectively. The larger amounts of nutrients in black alder plantations are related to the larger biomass of stands. The studied species used N and P with different efficiency for the production of a unit of biomass. Black alder and silver birch needed more N and P for biomass production, and Scots pine used nutrients most efficiently. The present study showed that during 7 years after planting, the survival and productivity of black alder were high. Therefore black alder is a promising tree species for the reclamation of oil shale post-mining areas.  相似文献   

10.
Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropics as a consequence of increasing human activities in the next decades. In the literature, it is frequently assumed that tropical montane forests are N-limited, while tropical lowland forests are P-limited. In a low-level N and P addition experiment, we determined the short-term response of N and P cycles in a north Andean montane forest on Palaeozoic shists and metasandstones at an elevation of 2100 m a.s.l. to increased N and P inputs. We evaluated experimental N, P and N + P additions (50 kg ha−1 yr−1 of N, 10 kg ha−1 yr−1 of P and 50 kg + 10 kg ha−1 yr−1 of N and P, respectively) and an untreated control in a fourfold replicated randomized block design. We collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall and litterfall before the treatment began (August 2007) until 16 months after the first nutrient application (April 2009). Less than 10 and 1% of the applied N and P, respectively, leached below the organic layer which contained almost all roots and no significant leaching losses of N and P occurred to below 0.15 m mineral soil depth. Deposited N and P from the atmosphere in dry and wet form were retained in the canopy of the control treatment using a canopy budget model. Nitrogen and P retention by the canopy were reduced and N and P fluxes in throughfall and litterfall increased in their respective treatments. The increase in N and P fluxes in throughfall after fertilization was equivalent to 2.5% of the applied N and 2% of the applied P. The fluxes of N and P in litterfall were up to 15% and 3%, respectively, higher in the N and N + P than in the control treatments. We conclude that the expected elevated N and P deposition in the tropics will be retained in the ecosystem, at least in the short term and hence, N and P concentrations in stream water will not increase. Our results suggest that in the studied tropical montane forest ecosystem on Palaeozoic bedrock, N and P are co-limiting the growth of organisms in the canopy and organic layer.  相似文献   

11.
Reduced soil respiration in gaps in logged lowland dipterocarp forests   总被引:1,自引:0,他引:1  
We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m−2 h−1) but were double those in gap sites (640 ± 130 mg CO2 m−2 h−1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.  相似文献   

12.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

13.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

14.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

15.
A purified Arabinogalactan-Protein composition (LL-4218) was prepared from the leaves of Argemone mexicana to treat psoriasis. The effect of (LL-4218) was evaluated on reproductive (male and female fertility) and developmental toxicity in rats. LL-4218 was administered orally at the doses of 250, 500 and 1000 mg kg− 1. The results showed that LL-4218 did not produce any significant dose related changes in reproductive and developmental toxicity studies. Therefore, it is concluded that LL-4218 did not produce any significant toxic effect on reproduction and developmental parameters of rats and NOAEL for reproductive and developmental toxicity studies in rats was 1000 mg kg− 1.  相似文献   

16.
17.
In the future it may become common practice to return wood-ash to forest ecosystems in order to replenish nutrients removed when brash has been extracted as a source of bioenergy. Wood-ash contains most of the nutrients that are present in the brash before its removal and burning, with the important exception of nitrogen (N). In the present paper we report measurements of CO2 emissions and net N mineralisation in the humus layer and the upper 5 cm of mineral soil 12 years after the application of wood-ash to two study sites, representing different tree species, climatic conditions and N deposition histories. We hypothesized that application of wood-ash would increase both carbon (C) and net N mineralisation rates at Torup, an N-rich site with Norway spruce (Picea abies (L.) Karst.) in the south, whereas the net N mineralisation rates would not be affected at Vindeln, an N-poor site with Scots pine (Pinus sylvestris L.) in the north, where a possible N-limitation would restrict any N mineralisation. The treatments, comprising additions of 0, 1, 3 or 6 Mg of granulated wood-ash ha−1, were applied in a randomised block design, replicated three times. Wood-ash from the same batch was used for all treatments at both sites. All factors were measured under laboratory conditions with controlled temperature and moisture levels. The potential CO2 emissions (kg ha−1 year−1 of CO2–C) at Torup were significantly higher in the 3 and 6 Mg ha−1 treatments than in the control treatment, and the highest application resulted in an extra loss of 0.5 Mg ha−1 of soil C annually as compared to the control. No such differences were detected at Vindeln. The results suggest that wood-ash application can deplete soil organic C at locations with similar characteristics (N-rich soil, spruce dominated, warm climate) as at Torup in this study.  相似文献   

18.
Information on soil carbon sequestration and its interaction with nitrogen availability is rather limited, since soil processes account for the most significant unknowns in the C and N cycles. In this paper we compare three completely different approaches to calculate carbon sequestration in forest soils. The first approach is the limit-value concept, in which the soil carbon accumulation is estimated by multiplying the annual litter fall with the recalcitrant fraction of the decomposing plant litter, which depends on the nitrogen and calcium content in the litter. The second approach is the N-balance method, where carbon sequestration is calculated from the nitrogen retention in the soil multiplied with the present soil C/N ratio in organic layer and mineral topsoil. The third approach is the dynamic SMART2 model in combination with an empirical approach to assess litter fall inputs. The comparison is done by first validating the methods at three chronosequences with measured C pools, two in Denmark and one in Sweden, and then application on 192 intensive monitoring plots located in the Northern and Western part of Europe. Considering all three chronosequences, the N-balance method was generally most in accordance with the C pool measurements, although the SMART2 model was also quite consistent with the measurements at two chronosequences. The limit-value approach generally overestimated the soil carbon sequestration. At the intensive monitoring plots, the limit-value concept calculated the highest carbon sequestration, ranging from 160 to 978 kg ha−1 year−1, followed by the N-balance method which ranged from 0 to 535 kg ha−1 year−1. With SMART2 we calculated the lowest carbon sequestration from −30 to 254 kg ha−1 year−1. All the three approaches found lower carbon sequestration at a latitude from 60 to 70° compared to latitudes from 40 to 50 and from 50 to 60. Considering the validation of the three approaches, the range in results from both the N-balance method and SMART2 model seems most appropriate.  相似文献   

19.
Tropical plantation forests are meeting an increasing proportion of global wood demand and comprehensive studies assessing the impact of silvicultural practices on tree and soil functioning are required to achieve sustainable yields. The objectives of our study were: (1) to quantify the effects of contrasting organic residue (OR) retention methods on tree growth and soil nutrient pools over a full Eucalyptus rotation and (2) to assess the potential of soil analyses to predict yields of fast-growing plantations established on tropical sandy soils. An experiment was set up in the Congo at the harvesting of the first rotation after afforestation of a native herbaceous savanna. Six treatments were set up in 0.26 ha plots and replicated in 4 blocks, with OR mass at planting ranging from 0 to 46.5 Mg ha−1. Tree growth over the whole rotation was highly dependent on OR management at planting. Over-bark trunk volume 7 years after planting ranged from 96 m3 ha−1 in the treatment with forest floor and harvest residue removal at planting to 164 m3 ha−1 in the treatment with the largest amount of OR. A comparison of nutrient stocks within the ecosystem at planting and at the end of the rotation suggested that nutrient contents in OR were largely involved in the different response observed between treatments. OR management treatments did not significantly modify most of the nutrient concentrations in the upper layers of the mineral soil. Conventional soil analyses performed before planting and at ages 1 and 3 years were unable to detect differences between treatments despite large differences in tree growth. In contrast, linear regressions between stand aboveground biomass at harvesting and OR mass at planting (independent variable) showed that OR mass was an excellent predictor of stand yield (R2 = 0.99). A large share of soil fertility comes from organic material above the mineral soil in highly weathered sandy soils and OR mass at planting might be used in conjunction with soil analyses to assess the potential of these soils to support forest plantations.  相似文献   

20.
【目的】揭示毛竹伐蔸根系养分含量和抗氧化能力的年际变化规律,为毛竹林伐蔸促腐技术研究提供理论参考。【方法】以6年生活立竹的蔸根为对照,分析比较了笋材两用毛竹林伐后2 a、4 a、6 a的伐蔸根系C、N、P、丙二醛(MDA)、可溶性蛋白质含量和根系活力、抗氧化酶活性。【结果】表明随着毛竹立竹伐后年限的增加,伐蔸根系的细胞膜脂过氧化程度提高,渗透调节能力降低,根系活力明显降低,抗氧化能力逐渐下降。但毛竹立竹伐后,甚至伐后6 a时,伐蔸根系仍有较强的生理活性和生长更新能力,具有较高的C、N、P含量,尤其是C含量明显提高,主要养分化学计量比产生适应性调节,N/P相对稳定,C/N、C/P趋于升高。【结论】毛竹伐后6 a,蔸根仍具有较强的养分吸收能力,也能通过与竹鞭的联系从活立竹转运利用有机C,这是毛竹伐蔸难以腐解的重要机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号