首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Q10 is the most important index of soil respiration, and is essential for accurate prediction of soil carbon response to global warming. The response of soil carbon storage is an issue on global and regional scales. In this study, published Q10 values of soil respiration in Japanese forests were examined (n = 44). The Q10 values ranged from 1.30 to 3.45, and the mean value was 2.18 (SD = 0.61, median = 2.02). These results were slightly lower than those of global compilations. The number of studies of Q10 values is still lacking, especially with regard to those in managed forests, those in northeast Japan, and those using modern measurement techniques such as infrared gas analysis. For accurate prediction of soil carbon dynamics and storage in Japanese forests, more such studies are required.  相似文献   

2.
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m3). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2–9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5–17% higher than in no harvesting.  相似文献   

3.
Forests accumulate much less carbon than the amount fixed through photosynthesis because of an almost equally large opposing flux of CO2 from the ecosystem. Most of the return flux to the atmosphere is through soil respiration, which has two major sources, one heterotrophic (organisms decomposing organic matter) and one autotrophic (roots, mycorrhizal fungi and other root-associated microbes dependent on recent photosynthate). We used tree-girdling to stop the flow of photosynthate to the belowground system, hence, blocking autotrophic soil activity in a 120-yr-old boreal Picea abies forest. We found that at the end of the summer, two months after girdling, the treatment had reduced soil respiration by up to 53%. This figure adds to a growing body of evidence indicating (t-test, d.f. = 7, p < 0.05) that autotrophic respiration may contribute more to total soil respiration in boreal (mean 53 ± 2%) as compared to temperate forests (mean 44 ± 3%). Our data also suggests that there is a seasonal hysteresis in the response of total soil respiration to changes in temperature. We propose that this reflects seasonality in the tree below-ground carbon allocation.  相似文献   

4.
土壤温度和水分对长白山3种温带森林土壤呼吸的影响   总被引:7,自引:0,他引:7  
为了研究土壤温度和土壤含水量对阔叶红松林(山地暗棕壤)、云冷杉暗针叶林(山地棕针叶林土壤)和岳桦林(生草森林土)的土壤呼吸的影响,于2001年9月在长白山进行了土壤实验。利用增加土壤样柱的含水量,将土壤含水量分为9%,、21%、30%、37%和43%5个等级,土壤样品分别在0、5、15、25和35的温度下保持24小时。阔叶红松林土壤在0~35范围内,土壤呼吸速率与温度呈正相关。在一定的含水量范围内(21%~37%),土壤呼吸随含水量的增加而升高,当含水量超出该范围,土壤呼吸速率则随含水量的变化而降低。土壤温度和水分对土壤呼吸作用存在明显的交互作用。不同森林类型土壤呼吸作用强弱存在显著差异,大小顺序为阔叶红松林>岳桦林>云冷杉暗针叶林.红松阔叶林土壤呼吸作用的最佳条件是土壤温度35,含水量37%;云冷杉暗针叶林下的山地棕色针叶土壤呼吸作用的最佳条件是25,21%;岳桦林土壤呼吸作用的最佳条件是35,含水量37%。但是,由于长白山阔叶红松林,云冷杉林和岳桦林处在不同的海拔带上,同期不同森林类型土壤温度各不相同,相差4~5,所以野外所测的同期的山地棕色针叶林土呼吸速率应低于暗棕色森林土呼吸速率,山地生草森林土呼吸速率应高于山地棕色针叶林土的呼吸速率。图2表1参25。  相似文献   

5.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO2/(m2 s−1) to a low of 2.3 ± 1.9 μmol CO2/(m2 s−1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO2/(m2 s−1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration.  相似文献   

6.
Regeneration of tree species associated with canopy gaps in broad-leaved Korean pine forests was investigated. Species diversity in gaps and under closed canopy was compared, the relationship between biodiversity and gap structure was analyzed. Results indicate that there were significant differences between tree species diversity in gaps and that under canopy (p<0.01). In terms of Shannon-Wiener index, evenness index, and abundance index, the biodiversity in gap community were higher than those under forest canopy in regeneration layer. In terms of Simpson’s dominance index, the dominance of certain species in the regeneration layer increased from gaps to closed canopy (p<0.01). In contrast, trends of biodiversity changes of succession layer in gaps and under closed canopy were opposite. Tree species diversity of different layers reacted directly to the change of gap size class. For example, Shannon-Wiener index and abundance index is higher and Simpson’s dominance index is the lowest in succession layer of medium-size gap (100–250 m2) in the broad-leaved Korean pine forest of Changbai Mountains. Shannon-Wiener index reached the highest in a size of ≥250 m2 and <100 m2, reached the lowest in a size of 200–250 m2 in the regeneration layer. Simpson’s dominance index reached its maximum when the gap size was between 200 and 250 m2. Generally, species of different layers reacted differently to the changes of gap size classes. The gap size class with more seedlings did not correspond to size class containing more medium-size trees. Tree species diversity indices in the two layers behaved reciprocally during the development process of forest gaps. __________ Translated from Chinese Journal of Applied Ecology, 2005, 16(12): 2,236–2,240 [译自: 应用生态学报, 2005, 16(12): 2,236–2,240]  相似文献   

7.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

8.
Land-use changes can modify soil carbon contents. Depending on the rate of soil organic matter (SOM) formation and decomposition, soil-vegetation systems can be a source or sink of CO2. The objective of this study was to determine the influence of land-use change on SOM distribution, and microbial biomass and respiration in an Andisol of the Chilean Patagonia. Treatments consisted of degraded natural prairie (DNP), thinned and pruned Pinus ponderosa plantations (PPP), and unmanaged second-growth Nothofagus pumilio forest (NPF). The soil was classified as medial, amorphic, mesic Typic Hapludands. Soil microbial respiration and microbial biomass were determined in the laboratory from soil samples taken at 0–5, 5–10, 10–20 and 20–40 cm depths obtained from three pits excavated in each treatment. Physical fractionation of SOM was performed in soil of the upper 40 cm of each treatment to obtain the three following aggregate-size classes: macroaggregates (>212 μm), mesoaggregates (212–53 μm) and microaggregates (<53 μm). Plant C content was 68% higher in PPP than in DNP and 635% higher in NPF than in PPP. Total soil and vegetation C content in both DNP and PPP were less than half of that in NPF. Total SOC at 0–10 cm depth decreased in the order DNP (7.82%) > NPF (6.16%) > PPP (4.41%), showing that land-use practices affected significantly (P < 0.01) SOC stocks. In all treatments, microbial biomass C and respiration were significantly higher (P < 0.05) in the upper 5 cm. Soil microbial respiration was also correlated positively with microbial biomass C and SOC. The different land uses affect the formation of organic matter, SOC and microbial biomass C, which in turn will affect soil microbial respiration. Conversion of DNP to PPP resulted in a 44% decrease of SOC stocks in 0–10 cm mineral soil. The largest amount of SOC was stabilized within the mesoaggregate fraction of the less disturbed system, NPF, followed by PPP. In the long term, formation of stable mesoaggregates in soils protected from erosion can behave as C sinks.  相似文献   

9.
According to the study on soils under the 34-year-old Larch forest and Larch-Walnut mixed forest, It was concluded that, in mixed forest, the total content of water-stable aggregate (0.25–5mm) in the upper layers (0–30cm) of soil was significantly higher than that in pure forest. The 2mm aggregates increased 48% in mixed forest soil compared with pure forest, and consequently, the three-phase ratio of soil was regulated, the physical properties improved and the fertility of soil raised. Because of the stability of total aggregate content and the importance of 2mm aggregate content in soil fertility, it’s advisable using the two indices above to characterize the effect of mixed forest on soil improvement.  相似文献   

10.
为研究不同树种模式模式碳汇造林对土壤碳的影响,该试验将立地条件基本一致的6个区组作为研究区,设计5个模式模式(各树种数量分数,模式1:台湾相思40%、木荷40%、马占相思10%、樟树10%;模式2:华润楠25%、红锥25%、樟树20%、米老排10%、木麻黄10%、水翁10%;模式3:马占相思30%、华润楠25%、山杜英...  相似文献   

11.
以云南磨盘山国家森林公园云南松天然林和人工林为研究对象,采用LI-6400-09便携式土壤呼吸室对土壤呼吸速率进行连续定位观测。结果表明:(1)两种林分的土壤呼吸速率具有明显的季节变化,均呈单峰曲线趋势;云南松天然林土壤呼吸速率在1.58~4.23μmol·m-2s-1之间,变异幅度为2.68;人工林土壤呼吸速率在1.13~3.34μmol·m-2s-1之间,变异幅度为2.96。(2)土壤呼吸速率的季节变化与不同层次土壤含水量均显著正相关(p0.05),而与不同层次土壤温度的相关性仅在云南松人工林达到显著水平。(3)双因素关系模型拟合结果表明,土壤温度和含水量共同解释了云南松天然林和人工林土壤呼吸速率的80.8%~93.0%和84.2%~85.9%。(4)两种林分土壤呼吸速率与土壤有机质含量相关性不显著(p0.05),土壤全氮含量仅与云南松天然林土壤呼吸相关性显著(R2=0.712,p0.05),而土壤水解氮含量对两林分土壤呼吸的影响均达到显著水平(p0.05),土壤C/N则与两林分呈极显著(p0.01)的负相关关系。因此,与天然林相比,人工林土壤温度、湿度及土壤C、N养分含量等土壤环境因子都存在变化,从而导致云南松天然林和人工林土壤呼吸速率时空变化的差异性。  相似文献   

12.
Forest gaps are important in forest dynamics and management, but little is known about how soil fauna influence the degradation of recalcitrant litter components in different-sized forest gaps. This investigation uses litterbags with two different mesh sizes (0.04 and 3 mm) to control the meso- and microfauna entering the bags to quantify the contribution of soil fauna to the degradation of recalcitrant components (including condensed tannins, total phenol, lignin and cellulose) during litter decomposition. The experiment was conducted in seven different forest gap sizes in Pinus massoniana plantations over 1 year. One closed-canopy site (CC) and forest gap sizes of 100, 225, 400, 625, 900, 1225 and 1600 m^2 were created in a P. massoniana plantation in the Sichuan basin of China;the CC was treated as the control. Cinnamomum camphora foliage from local native trees was used in all forest gap experiments. We found the following:(1) Gap size had significant effects on the degradation rates (E) of condensed tannins and lignin and on the contributions of soil fauna;medium-sized gaps also presented high degradation rates. Soil fauna obviously contributed to the degradation of recalcitrant foliar litter components in medium-sized gaps.(2) The highest contribution to degradation (40.98%) was recorded for lignin, and the lowest contribution (0.29%) was recorded for condensed tannins. The results indicate that medium-sized gaps (900 m^2) were conducive to the degradation of recalcitrant litter components by soil fauna.  相似文献   

13.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

14.
Soil respiration and soil carbon dioxide (CO2) concentration were investigated in a tropical monsoon forest in northern Thailand, from 1998 to 2000. Soil respiration was relatively high during the rainy season and low during the dry season, although interannual fluctuations were large. Soil moisture was widely different between the dry and wet seasons, while soil temperature changed little throughout the year. As a result, the rate of soil respiration is determined predominantly by soil moisture, not by soil temperature. The roughly estimated annual soil respiration rate was 2560gCm–2year–1. The soil CO2 concentration also increased in the rainy season and decreased in the dry season, and showed clearer seasonality than soil respiration did.  相似文献   

15.
We investigated soil physical properties in three forest types in tropical lowland monsoon forests in central Cambodia under the same climatic conditions, i.e., Kanhaplic Haplustults in dry evergreen forest (KH-E), Arenic Haplustults in dry deciduous forest (AH-D), and Arenic Ultic Alorthods in mixed evergreen–deciduous forest (AA-M), to clarify the relationship between forest types and soil physical properties. The clay content was correlated with water content at ψ = −9.8 and −1500 kPa (WC10 and WC1500), available water capacity (AWC), and the van Genuchten (vG) parameter N (P < 0.01). vG parameter N was in the order AH-D > AA-M > KH-E whereas vG parameter α had a high value in KH-E soil at 0–100 cm in depth. The cumulative AWC (AWCcl, mm) at a soil depth of 0–200 cm was higher in the AH-D than in the KH-E, and was not considered a major factor affecting the distribution of different forest types under the same climatic conditions. The unsaturated hydraulic conductivity (K) at 0–100 cm in depth, estimated by use of models, was higher in AH-D than in KH-E mostly at matric potential ψ > −10 kPa. The low K in KH-E at ψ > −10 kPa was considered favorable for evergreen trees to retain the soil water for the transpiration in the dry season, and the matric potential in KH-E showed more gentle decreases in the early dry seasons than AH-D. Thus the differences in K among generally sandy soil types could possibly affect the establishment of different forest types in the study area with the same climate.  相似文献   

16.
Changes in temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration that are expected in the coming decades will have profound impacts on terrestrial ecosystem net primary production (NPP). Nearly all models linking forest NPP with soil carbon (C) predict that increased NPP will result in either unchanged or increased soil C storage, and that decreased NPP will result in decreased soil C storage. However, linkages between forest productivity and soil C storage may not be so simple and direct. In an old-growth coniferous forest located in the H.J. Andrews Experimental Forest, OR, USA, we experimentally doubled needle litter inputs, and found that actual soil respiration rates exceeded those expected due to the C added by the extra needles. Here, we estimated that this ‘priming effect’ accounted for 11.5–21.6% of annual CO2 efflux from litter-amended plots, or an additional 137–256 g C m−2 yr−1 loss of stored C to the atmosphere. Soil priming was seasonal, with greatest amounts occurring in June–August coincident with peaks in temperature and dry summer conditions. As a result of priming, mineral soil was more resistant to further mineralization during laboratory incubations. Soil lignin-derived phenols in the Double Litter plots were more oxidized than in the control, suggesting that the soil residue was more degraded. Our hypothesis that excess dissolved organic C produced from the added litter provided the link between the forest floor and mineral soil and a substrate for soil priming was not supported. Instead, the rhizosphere, and associated mycorrhizal fungi, likely responded directly to the added aboveground litter inputs. Our results revealed that enhanced NPP may lead to accelerated processing of some stored soil C, but that the effects of increased NPP on ecosystem C storage will be based on a net balance among all ecosystem C pools and are likely to be ecosystem-dependant. Forest C models need to include these complex linkages between forest productivity and soil C storage.  相似文献   

17.
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition.  相似文献   

18.
Changes to vegetation and soil were assessed in primeval forests of the Eastern Carpathians after a period of 59-68 years. We hypothesized that forest ecosystems were acidified through the long-distance transport of air pollutants. A total of 141 relevés and 20 soil profiles that had been studied in 1938 in spruce- and beech-dominated forests along an altitudinal gradient ranging from 1085-1575 m a.s.l. were re-surveyed from 1997 to 2006. Relevés were analyzed using multidimensional statistics and plant community characteristics (Shannon-Wiener’s index, equitability, fidelity, Ellenberg indication values - EIV); soil reaction and sorption complex properties were analyzed in soils.A total of 159 vascular plant taxa were recorded in 1938, of which 35 were not found during the repeat survey. During the later survey, 137 taxa were found, of which 13 were new findings. The upper mineral (A) as well as cambic or spodic (B) horizons were considerably acidified in both forest types. Both active and exchange soil reaction decreased by 0.1-0.3 units on average, exchangeable acidity significantly increased and the sum of base cations decreased in both soil horizons and forest types. Base saturation decreased by more than half of original values, with a maximum decrease of 68% found in the B-horizon of spruce forests. Whereas the herb layer developed along with soils in beech-dominated forests, EIV values for soil reaction increased in spruce-dominated forests, probably due to the movement of broadleaf woody species to higher elevations or due to the higher resistance of herb species to soil acidification. Significant changes to EIVs also occurred in the beech- and/or spruce-dominated forests for the factors of nitrogen, light moisture and temperature.There was an expansion of the lower tree and shrub layers, primarily Fagus sylvatica, Picea abies and Sorbus aucuparia in intermediate and higher elevations, which can be explained by reduced cattle grazing. Also, the dissipation of Juniperus communis and marked decline of Abiesalba are interpreted as being related to gradual changes in landscape management along with the effect of acid deposition. Since 1938, all stands have shown a significant increase in nitrophilous taxa such as Rubusidaeus, Athyrium distentifolium, Urtica dioica, Calamagrostis arundinacea, Stellaria nemorum. Significant decreases in the number of species, Shannon-Wiener’s index and equitability were only observed in spruce-dominated forests. Neophyte taxa were not detected in either the 1930s or the 1997-2006 period.  相似文献   

19.
Soil moisture content (0–90 cm depth) and nitrate-nitrogen (NO3-N) concentrations in soil solution (90 cm depth) were monitored after gap formation (diameter 15–18 m) in three Danish beech-dominated forests on nutrient-rich till soils. NO3-N drainage losses were estimated by the water balance model WATBAL for one of the sites. Two forests were non-intervention forests (semi-natural and unmanaged), the third was subject to nature-based management. The study was intended to assess the range of effects of gap formation in forests of low management intensity. In the unmanaged and the nature-based managed forest, soil solution was collected for 5 years and soil moisture measured in the fourth year after gap formation. Average NO3-N concentrations were significantly higher in the gaps (9.9 and 8.1 mg NO3-N l−1, respectively) than under closed canopy (0.2 mg l−1). In the semi-natural forest, measurements were carried out up to 29 months after gap formation. Average NO3-N concentrations in the gap were 19.3 mg NO3-N l−1. Gap formation alone did not account for this high level, as concentrations were high also under closed canopy (average 12.4 mg NO3-N l−1). However, the gap had significantly higher N concentrations when trees were in full leaf, and NO3-N drainage losses were significantly increased in the gap. No losses occurred under closed canopy in growing seasons. Soil moisture was close to field capacity in all three gaps, but decreased under closed canopy in growing seasons. In the semi-natural forest, advanced regeneration and lateral closure of the gap affected soil moisture levels in the gap in the last year of the study.  相似文献   

20.
We estimated the required sample sizes for estimating large-scale soil respiration (for areas from 1 to 2 ha) in four ecosystems (primary and secondary forests, and oil palm and rubber plantations) in Malaysia. The soil respiration rates were 769 ± 329 mg CO2 m−2 h−1 in the primary forest (2 ha, 50 sample points), 708 ± 300 mg CO2 m−2 h−1 in the secondary forest (2 ha, 50 points), 815 ± 363 mg CO2 m−2 h−1 in the oil palm plantation (1 ha, 25 points), and 450 ± 178 mg CO2 m−2 h−1 in the rubber plantation (1 ha, 25 points). According to our sample size analysis, the number of measurement points required to determine the mean soil respiration rate at each site with an error in the mean of no more than 10% ranged from 67 to 85 at the 95% probability level. These results suggest that evaluating the spatial heterogeneity of soil respiration rates in the tropics may require more measurement points than in temperate forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号