首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In electron-transfer processes, spin effects normally are seen either in magnetic materials or in systems containing heavy atoms that facilitate spin-orbit coupling. We report spin-selective transmission of electrons through self-assembled monolayers of double-stranded DNA on gold. By directly measuring the spin of the transmitted electrons with a Mott polarimeter, we found spin polarizations exceeding 60% at room temperature. The spin-polarized photoelectrons were observed even when the photoelectrons were generated with unpolarized light. The observed spin selectivity at room temperature was extremely high as compared with other known spin filters. The spin filtration efficiency depended on the length of the DNA in the monolayer and its organization.  相似文献   

2.
Quantum spin hall insulator state in HgTe quantum wells   总被引:1,自引:0,他引:1  
Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from n-type to p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nanometers, the insulating regime showed the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nanometers), the nominally insulating regime showed a plateau of residual conductance close to 2e(2)/h, where e is the electron charge and h is Planck's constant. The residual conductance was independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also independently determined from the magnetic field-induced insulator-to-metal transition. These observations provide experimental evidence of the quantum spin Hall effect.  相似文献   

3.
Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y2BaNiO5), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.  相似文献   

4.
Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.  相似文献   

5.
Materials emitting light in the deep ultraviolet region around 200 nanometers are essential in a wide-range of applications, such as information storage technology, environmental protection, and medical treatment. Hexagonal boron nitride (hBN), which was recently found to be a promising deep ultraviolet light emitter, has traditionally been synthesized under high pressure and at high temperature. We successfully synthesized high-purity hBN crystals at atmospheric pressure by using a nickel-molybdenum solvent. The obtained hBN crystals emitted intense 215-nanometer luminescence at room temperature. This study demonstrates an easier way to grow high-quality hBN crystals, through their liquid-phase deposition on a substrate at atmospheric pressure.  相似文献   

6.
Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in β-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.  相似文献   

7.
Most materials freeze when cooled to sufficiently low temperature. We find that magnetic dipoles randomly distributed in a solid matrix condense into a spin liquid with spectral properties on cooling that are the diametric opposite of those for conventional glasses. Measurements of the nonlinear magnetic dynamics in the low-temperature liquid reveal the presence of coherent spin oscillations composed of hundreds of spins with lifetimes of up to 10 seconds. These excitations can be labeled by frequency and manipulated by the magnetic fields from a loop of wire and can permit the encoding of information at multiple frequencies simultaneously.  相似文献   

8.
A single-electron memory, in which a bit of information is stored by one electron, is demonstrated at room temperature. The memory is a floating gate metal-oxide-semiconductor transistor in silicon with a channel width ( approximately 10 nanometers) smaller than the Debye screening length of a single electron and a nanoscale polysilicon dot ( approximately 7 nanometers by 7 nanometers) as the floating gate embedded between the channel and the control gate. Storing one electron on the floating gate screens the entire channel from the potential on the control gate and leads to (i) a discrete shift in the threshold voltage, (ii) a staircase relation between the charging voltage and the shift, and (iii) a self-limiting charging process. The structure and fabrication of the memory should be compatible with future ultralarge-scale integrated circuits.  相似文献   

9.
Transformation optics and subwavelength control of light   总被引:1,自引:0,他引:1  
  相似文献   

10.
Understanding and controlling the complex environment of solid-state quantum bits is a central challenge in spintronics and quantum information science. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment. We show that this environment is effectively separated into a set of individual proximal 13C nuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, which cause the loss of coherence. The proximal nuclear spins can be addressed and coupled individually because of quantum back-action from the electron, which modifies their energy levels and magnetic moments, effectively distinguishing them from the rest of the nuclei. These results open the door to coherent manipulation of individual isolated nuclear spins in a solid-state environment even at room temperature.  相似文献   

11.
Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with theconcentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.  相似文献   

12.
Vapor deposition has been used to create glassy materials with extraordinary thermodynamic and kinetic stability and high density. For glasses prepared from indomethacin or 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene, stability is optimized when deposition occurs on substrates at a temperature of 50 K below the conventional glass transition temperature. We attribute the substantial improvement in thermodynamic and kinetic properties to enhanced mobility within a few nanometers of the glass surface during deposition. This technique provides an efficient means of producing glassy materials that are low on the energy landscape and could affect technologies such as amorphous pharmaceuticals.  相似文献   

13.
Spin ordering in the low-temperature magnetic phase is directly linked to the orientational ordering of C(60) molecules in organically doped fullerene derivatives. Electron spin resonance and alternating current susceptometry measurements on tetrakis(dimethylamino)ethylene-C(60) (TDAE-C(60)) (Curie temperature T(c) = 16 kelvin) show a direct coupling between spin and merohedral degrees of freedom. This coupling was experimentally demonstrated by showing that ordering the spins in the magnetic phase imprints a merohedral order on the solid or, conversely, that merohedrally ordering the C(60) molecules influences the spin order at low temperature. The merohedral disorder gives rise to a distribution of pi-lectron exchange interactions between spins on neighboring C(60) molecules, suggesting a microscopic origin for the observed spinglass behavior of the magnetic state.  相似文献   

14.
Microspectrophotometric measurements of individual dark-adapted rhabdoms of the prawn Palaemonetes vulgaris reveal the presence of two light-sensitive pigments. A pigment with maximum absorbancy at 555 nanometers is converted by light to a long-lived intermediate with wavelength of maximum absorbancy at 496 nanometers. A second pigment with wavelength of maximum absorbancy at 496 nanometers bleaches in the light, seemingly without forming detectable products at wavelengths longer than 375 nanometers. Both pigments occur in each layer of microvilli.  相似文献   

15.
Piezoelectric materials have many applications at cryogenic temperatures. However, the piezoelectric response below 10 kelvin is diminished, making the use of these materials somewhat marginal. Results are presented on strontium titanate (SrTiO3), which exhibits a rapidly increasing piezoelectric response with decreasing temperature below 50 kelvin; the magnitude of its response around 1 kelvin is comparable to that of the best materials at room temperature. This "giant" piezoelectric response may open the way for a broad class of applications including use in ultralow-temperature scanning microscopies and in a magnetic field-insensitive thermometer. These observations, and the possible divergence of the mechanical response to electric fields at even lower temperatures, may arise from an apparent quantum critical point at absolute zero.  相似文献   

16.
Li X  Wang X  Zhang L  Lee S  Dai H 《Science (New York, N.Y.)》2008,319(5867):1229-1232
We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10(7) at room temperature.  相似文献   

17.
Cessation of movement (stop response) is used as a criterion for light reception by the dinoflagellate Gyrodinium dorsum Kofoid. Brief irradiation (2 seconds at 470 nanometers) elicits a stop response in cells any time during the 6-minute interval after removal from growth lights. This stop response is inactivated by exposure for 4 minutes to 470-nanometer light prior to stimulation. Red light (620 nanometers) reactivates this stop response, and far-red light (700 nanometers) reverses this reactivation. This red-far-red photo reversibility is taken as evidence for phytochrome involvement.  相似文献   

18.
Conductivity measurements on double-stranded DNA molecules deposited by a combing process across a submicron slit between rhenium/carbon metallic contacts reveal conduction to be ohmic between room temperature and 1 kelvin. The resistance per molecule is less than 100 kilohm and varies weakly with temperature. Below the superconducting transition temperature (1 kelvin) of the contacts, proximity-induced superconductivity is observed. These results imply that DNA molecules can be conducting down to millikelvin temperature and that phase coherence is maintained over several hundred nanometers.  相似文献   

19.
本文对生长在红、绿、蓝光以及遮荫和阳生条件下的油松苗针叶及叶绿体的吸收光谱和室温荧光光谱的性质进行了研究。结果表明:遮荫和红光导致针叶增加对500nm~600nm光的吸收。它们的F_(735)激发光谱在500nm~600nm区有很高的荧光激发活性。针叶在室温下有两个荧光发射峰,F_(735)和F_(685)。它们的性质受光照条件的影响。阴生叶和红生叶的相对荧光强度最大。F_(735)/F_(685)比值阳生叶最小,红生叶最大。针叶、离休叶绿体、PSⅠ、PSⅡ及LHCP等在室温下都发射F_(735)和F_(685)两个荧光峰。并且,扑草净不仅使F_(685)相对荧光强度增大,同时也使F_(735)的相对荧光强度增加。  相似文献   

20.
The zero-field muon spin relaxation technique has been used in the direct observation of spontaneous magnetic order below a Curie temperature (T(c)) of approximately 16.1 kelvin in the fullerene charge-transfer salt (tetrakisdimethylaminoethylene)C(60) [(TDAE)C(60)]. Coherent ordering of the electronic magnetic moments leads to a local field of 68(1) gauss at the muon site at 3.2 kelvin (parentheses indicate the error in the last digit). Substantial spatially inhomogeneous effects are manifested in the distribution of the local fields, whose width amounts to 48(2) gauss at the same temperature. The temperature evolution of the internal magnetic field below the freezing temperature mirrors that of the saturation magnetization, closely following the behavior expected for collective spin wave (magnon) excitations. The transition to a ferromagnetic state with a T(c) higher than that of any other organic material is now authenticated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号