首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In arid and semiarid countries, grain yield of maize is increasingly impaired by soil salinity. Beside soil amelioration, the development of salt-resistant cultivars is a possibility to enhance crop yield on salt-affected soils.

Aims

This study aimed at testing yield performance in the field of salt-resistant maize hybrids on a salt-affected soil. In addition, planting density was optimized under the saline conditions.

Methods

Four salt-resistant maize hybrids (Zea mays L. SR-05, SR-12, SR-15, and SR-16) were grown under control (EC = 2.0–2.5 dS m−1) and saline (EC = 10.0–12.0 dS m−1) field conditions and compared to the salt-sensitive maize cv. Pioneer-3906. Planting density (5, 8, or 11 plants m−2) was optimized for saline soil conditions for SR-12 and the local hybrid EV-78.

Results

Yield of Pioneer-3906 was significantly reduced under salinity because of inhibited kernel setting, whereas the SR hybrids showed no decrease in grain yield. Based on grain yield, the optimum planting density was 8 plants m−2 with no further increase with 11 plants m−2. In contrast to SR-12, for cv. EV-78 no increase of harvest index with 8 relative to 5 plants m−2 was observed.

Conclusions

Vegetative growth of Pioneer-3906 and the SR hybrids was decreased due to Phase-I effects but neither due to water deficiency nor ion toxicity. The experiment corroborated the salt resistance of the SR hybrids under field conditions. Under saline conditions, optimum planting density of salt-resistant cultivars may be higher than under nonsaline conditions when sufficient water supply by artificial irrigation is guaranteed.  相似文献   

2.
Fumonisins were monitored in corn grain collected from Bt hybrids grown in 107 locations across the United States in 2000-2002. Bt corn hybrids contain the Cry1Ab protein from Bacillus thuringiensis that controls European corn borers and other stalk-boring pests. Fumonisin levels were frequently lower in grain from Bt hybrids grown in field trials under conditions of natural (FACT trials) or manual insect infestation (university trials). Over three years of FACT trials, there were 126/210 comparisons when fumonisin levels in grain from control hybrids were >2 ppm, exceeding U.S. FDA guidance levels of 2 ppm for human food. Grain from Bt hybrids was at or below 2 ppm of fumonisins for 58 of the 126 comparisons. The use of Bt hybrids can increase the percentage of corn grain that would be suitable for use in food and feed.  相似文献   

3.
The effect of source reduction on yield and yield components of three maize hybrids at three plant densities was studied under agro-climatic conditions in southern Iran. Field experiments were conducted at the research farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E, 1810 masl) during the 2008 and 2009 growing seasons. The treatments included three hybrids, three plant densities and defoliation, arranged in the main, subplots and sub-subplots, respectively. Defoliation treatments, which consisted of removing all the leaves from one side of the maize plants, were imposed when plants were at the silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Partial defoliations included control, and 50% defoliation at 25 and 35 days after silking (defoliation treatments were applied to all plants in each plot). The experiments were conducted in a randomized complete block (RCB) design with three replications. Dry matter accumulation was assessed by sampling ears at 7-day intervals from the mid-silking stage to black layer formation. Defoliation treatments decreased grain yields significantly in both years. The highest grain yield in 2008 (19 t ha?1) was obtained from hybrid Maxima ‘524’ and in 2009 (14 t ha?1) from hybrid 704 at 95,000 plants ha?1 density. Defoliation treatments decreased grain yields due to a reduction in the number of kernels per ear, as well as mean kernel weight. Some other measured parameters including stalk, shank, husk and cob dry weights, and cob and ear lengths were also decreased under defoliation treatments. If 50% of the photosynthetic area after silking was removed, the quantity of retransferred assimilates from stalk to kernel was increased. Finally, partial defoliation, 25 days after silking, reduced all the yield components more than any other treatments.  相似文献   

4.
土壤干旱下氮磷营养对玉米气体交换的影响   总被引:2,自引:0,他引:2  
在盆栽条件下就氮磷营养对玉米叶片气体交换的影响进行了比较研究。结果发现 :虽然土壤干旱条件下 ,氮磷均增大了玉米叶片的气孔导度 ,但氮对促进干旱条件下气孔开放的作用要显著大于磷的作用 ;土壤干旱条件下 ,氮磷均有增大玉米叶片光合速率的作用 ,但氮有同时减小光合的气孔和非气孔限制的作用 ,而磷提高干旱条件下的光合速率则主要以减小光合的非气孔限制 (提高叶肉光合活性 )为主 ;由于氮磷对玉米叶片气孔导度和光合作用的不同影响 ,因而表现出其在提高干旱条件下玉米叶片水分利用效率方面的不同作用 ,其中磷对提高干旱条件下玉米水分利用效率的作用更为明显  相似文献   

5.
为了研究玉米生长后期根系的生长发育规律,利用中国气象局固城农业气象试验站大型根剖面系统,采用微根管观测系统及方形整段标本法和地下根系室玻璃窗,对‘屯玉46号’玉米根系的生长状况进行了试验研究。结果表明:垂直方向上,方形整段标本法和微根管法测得的根长密度占整层总根长密度比例的变化趋势一致,相关系数分别为0.987和0.717,且两种方法在0~20 cm土层的根长密度比例均为最大。0~60 cm土层为玉米根系生长活跃区,方形整段标本法测得根长密度生长量为其余层的4倍。两种方法测得的根长密度无显著差异,相关系数为0.830,均匀性水平较好。玉米成熟期根系的水平幅度较乳熟期窄,下层根系仍处于生长中,垂直深度增加。玻璃窗与方形整段标本法观测的根深测定结果存在差异,这可能与观测环境条件不一致有关。  相似文献   

6.
【目的】 提高玉米氮效率是实现农业高产高效的重要措施,而花后叶片的衰老和玉米的氮效率密切相关。为此,在田间条件下研究了叶片衰老过程与氮转移效率的关系,尤其是不同玉米品种氮转移效率差异的分子机制。 【方法】 田间试验选择中度绿熟玉米品种先玉335 (XY335) 和持绿玉米品种NE9为供试作物,设施N 45,120和240 kg/hm2三个水平。测定了玉米吐丝期以及吐丝后7 d、14 d、21 d、28 d、35 d、42 d和成熟期茎、叶、籽粒氮含量和花后绿叶面积,吐丝期及吐丝后14 d、28 d、42 d和成熟期叶片氮浓度,以及吐丝期和灌浆期叶片中SPAD、可溶性蛋白浓度、游离氨基酸浓度和ZmSee2β (玉米叶片中协同衰老的蛋白酶–豆荚蛋白的基因) 基因表达的变化,计算了叶片氮转移效率。 【结果】 品种XY335具有比品种NE9更高的产量,随施氮量的增加品种XY335的籽粒产量较品种NE9增加更加显著。虽然两个品种的收获指数没有差异,但是品种XY335的氮素收获指数高于品种NE9,并且品种XY335营养器官的氮转移效率高于品种NE9,整体高8.28个百分点 (P < 0.05)。品种XY335叶片氮转移效率比品种NE9高出12.89个百分点,而二者茎的氮转移效率没有差异。品种XY335花后叶片中氮浓度开始降低的时间早于品种NE9,在低氮条件下尤为明显。成熟期时,三个氮水平处理下品种XY335叶片中的氮含量均低于品种NE9。从吐丝期到灌浆期,品种XY335叶片中可溶性蛋白的降解率高于品种NE9,其中N45处理下高16.5个百分点,N120处理下高6.2个百分点。从吐丝期到灌浆期叶片中游离氨基酸的浓度不断增加,而品种XY335叶片中的增加幅度大于品种NE9。从吐丝期到灌浆期叶片中 ZmSee2β基因表达量增加,而随施氮量减少品种XY335叶片中表达量高于品种NE9,表明品种XY335叶片中蛋白降解得更加迅速。 【结论】 相对于绿熟品种NE9,品种XY335具有籽粒产量高和籽粒氮素积累强的特点。这不仅由于吐丝后品种XY335具有较强的氮素吸收能力,而且因为品种XY335有更高的叶片氮转移效率。品种XY335叶片氮转移效率高可能是因为控制蛋白质降解的ZmSee2β基因表达能力强,提高了叶片中蛋白质的降解速度。   相似文献   

7.
8.

Purpose

The cultivation of genetically modified (GM) crops has raised environmental concerns, since large amounts of plant materials remain in the field after harvesting. Specific proteins of GM crops might negatively impact soil ecosystem by changing residue decomposition dynamics. Particularly, the residue decomposition of crop-wild hybrids, which were formed through transgene escape to wild population, remains unexplored.

Materials and methods

We used litter bags to assess residue (leaves, stems and roots) decomposition dynamics of two stacked genes from Bacillus thuringiensis (Bt) Cry1Ac and the sck (a modified CpTI gene encoding a cowpea trypsin-inhibitor) (Bt/CpTI) rice lines (Kefeng-6 and Kefeng-8), a non-transgenic rice near isoline (Minghui86), wild rice (Oryza rufipogon) and Bt wild rice at three sites. The enzyme-linked immunosorbent assay (ELISA) was used to monitor the changes of the Cry1Ac protein in Bt rice residues.

Results and discussion

Mass remaining, total N and total C concentrations of rice residues declined over time and varied among plant tissues, with significant differences among cultivar, crop-wild hybrids and wild rice, but no differences between Bt and non-Bt rice cultivars. The initial concentration of Cry1Ac was higher in leaves and stems than in roots and was different between rice types. The degradation dynamics of Cry1Ac fitted best to a first-order kinetics model and correlated with the level of total nitrogen in residues but did not correlate with the mass decomposition rate. The predicted DT50 (50 % degradation time) of the protein ranged from 10.7 to 63.6 days, depending on plant types, parts and burial sites. By the end of the study (~170 days), the protein was present in low concentration in the remaining residues.

Conclusions

Our results suggest that the impacts of the stacked Bt/CpTI gene inserts on the decomposition dynamics of rice residues are insignificant.  相似文献   

9.
In the subtropical highlands of Central Mexico, where the main crop is maize (Zea mays), the conventional practice (CP) involves tillage, monoculture and residue removal, leading to soil degradation and unsustainable use of natural resources and agricultural inputs. Conservation agriculture (CA) has been proposed as a viable alternative in the region, based on reduction in tillage, retention of adequate levels of crop residues and soil surface cover and use of crop rotation. This study began in 2009 when the highlands of Central Mexico suffered from a prolonged drought during vegetative maize growth in July-August, providing an opportunity for the on-farm comparison of CA with CP under severe drought conditions which 21 climate change models projected to become more frequent. Under dry conditions, CA resulted in higher yields and net returns per hectare as early as the first and second years after adoption by farmers. As an average of 27 plots under farmers' management in 2009, the maize yields were 26% higher under CA (6.3 t ha-1) than under CP (5.0 t ha-l). 2010 was close to a normal year in terms of rainfall so yields were higher than in 2009 for both practices; in addition, the yield difference between the practices was reduced to 19% (6.8 t ha-1 for CA vs. 5.7 t ha-1 for CP). When all the 2009 and 2010 observations were analyzed in a modified stability analysis, CA had an overall positive effect of 3 838 Mexican Pesos ha-1 (320 $US ha-1) on net return and 1.3 t ha-1 on yield. After only one to two years of adoption by farmers on their fields, CA had higher yields and net returns under dry conditions that were even drier than those predicted by the analyzed 21 climate change models under a climate change scenario, emission scenario A2.  相似文献   

10.
This study investigated the effects of wood-derived biochar (BC) applied at 1% to a C-poor silty-loam soil in the drought-tolerant (D24) and in the drought-sensitive (P1921) Pioneer Hi-Bred maize hybrids in pot and field trials (NE Italy). D24 had better growth than P1921 under rain-fed conditions without irrigation and soil amendment. The addition of biochar increased root growth in D24 (+38% root area) and decreases it in P1921 (?9%) at the silking stage, while the fraction of finer roots (<250 µm diam.) was reduced in D24 and increased in P1921. This led both hybrids to maintain the maximum transpiration at a lower fraction of transpirable soil water (from 82% to 45% in D24, and from 46% to 22% in P1921). There were no significant variations in plant nutrient contents, productivity and in the protein and starch contents of the grains, whereas the lipid content was reduced by biochar, particularly in P1921 (2.6% vs. 3% DW, ?13%).

We conclude that biochar can be profitably used to enhance drought tolerance in maize, possibly due to improvements in the physicochemical characteristics and the water content of treated soils, although maximum benefits are expected in drought-tolerant hybrids through increased root elongation and transpiration.  相似文献   

11.
OBJECTIVE: To investigate the effects on maternal micronutrient status and infant growth of the increased maize prices that resulted from the southern African drought of 2001-2002. DESIGN: Longitudinal cohort study. SETTING: A maternal and child health clinic in Lusaka, Zambia. SUBJECTS: Maternal and infant health and nutrition data and maternal plasma were being collected for a study of breast-feeding and postpartum health. Samples and data were analysed according to whether they were collected before (June to December 2001), during (January 2002 to April 2003) or after (May 2003 to January 2004) the period of increased maize price. Season and maternal HIV status were controlled for in analyses. RESULTS: Maize price increases were associated with decreased maternal plasma vitamin A during pregnancy (P = 0.028) and vitamin E postpartum (P = 0.042), with the lowest values among samples collected after May 2003 (vitamin A: 0.96 micromol l(-1), 95% confidence interval (CI) 0.84-1.09, n = 38; vitamin E: 30.8 micromol mmol(-1) triglycerides, 95% CI 27.2-34.8, n = 64) compared with before January 2002 (vitamin A: 1.03 micromol l(-1), 95% CI 0.93-1.12, n = 104; vitamin E: 38.9 micromol mmol(-1) triglycerides, 95% CI 34.5-43.8, n = 47). There were no significant effects of sampling date on maternal weight, haemoglobin or acute-phase proteins and only marginal effects on infant weight. Infant length at 6 and 16 weeks of age decreased progressively throughout the study (P-values for time of data collection were 0.51 at birth, 0.051 at 6 weeks and 0.026 at 16 weeks). CONCLUSIONS: The results show modest effects of the maize price increases on maternal micronutrient status. The most serious consequence of the price increases is likely to be the increased stunting among infants whose mothers experienced high maize prices while pregnant. During periods of food shortages it might be advisable to provide micronutrient supplements even to those who are less food-insecure.  相似文献   

12.
The results of an experiment to study the occurrence and distribution of pesticide residues during rice cropping and processing are reported. Four herbicides, nine fungicides, and two insecticides (azoxystrobin, byspiribac-sodium, carbendazim, clomazone, difenoconazole, epoxiconazole, isoprothiolane, kresoxim-methyl, propanil, quinclorac, tebuconazole, thiamethoxam, tricyclazole, trifloxystrobin, λ-cyhalotrin) were applied to an isolated rice-crop plot under controlled conditions, during the 2009-2010 cropping season in Uruguay. Paddy rice was harvested and industrially processed to brown rice, white rice, and rice bran, which were analyzed for pesticide residues using the original QuEChERS methodology and its citrate variation by LC-MS/MS and GC-MS. The distribution of pesticide residues was uneven among the different matrices. Ten different pesticide residues were found in paddy rice, seven in brown rice, and eight in rice bran. The highest concentrations were detected in paddy rice. These results provide information regarding the fate of pesticides in the rice food chain and its safety for consumers.  相似文献   

13.
盆栽试验结果表明,高梁和玉米2种作物均存在渗透调节和抗氧化耐旱途径。高梁耐旱性较强,干旱条件下叶片相对含水量较高,水势亦较大。高梁以可溶性糖和蛋白质为主要渗透调节物质,以过氧化氢酶(CAT)为主要抗氧化酶。玉米以K^+和脯氨酸为主要渗透调节物质,以超氧化物歧化酶(SOD)和过氧化物酶(POD)为主要抗氧化酶。  相似文献   

14.
盆栽试验结果表明,高粱和玉米2种作物均存在渗透调节和抗氧化耐旱途径。高粱耐旱性较强,干旱条件下叶片相对含水量较高,水势亦较大。高粱以可溶性糖和蛋白质为主要渗透调节物质,以过氧化氢酶(CAT)为主要抗氧化酶。玉米以K 和脯氨酸为主要渗透调节物质,以超氧化物歧化酶(SOD)和过氧化物酶(POD)为主要抗氧化酶。  相似文献   

15.
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.  相似文献   

16.
As part of an overall assessment of the commercial suitability of strawberry cultivars for the Nordic environment, we studied 13 diverse cultivars in an experimental field in South East Norway. Early-maturing cultivars were characterized by early initiation of floral primordia and early flowering and fruit maturation. High temperatures in July and early August delayed floral initiation in the early cultivars, resulting in more synchronous initiation of early and late cultivars. The recent Norwegian cultivar ‘Nobel’, which has an everbearing parent, differed from the other cultivars by early initiation also at elevated summer temperature. Inadequate yield and berry size were identified as important causes for outdating of older cultivars, such as ‘Senga Sengana’ and ‘Glima’. Overall, the high-yielding and large-fruited ‘Sonata’ was judged as the best fresh consumption cultivar in Norway, and market trends indicate that it will continue to expand its market share at the expense of ‘Korona’, mainly because of inadequate fruit firmness and shelf life of the latter. Adequate yields and berry quality justify the use of the late maturing ‘Florence’ for prolongation of the fresh market season. The results are discussed together with practical experiences and market preferences in an attempt to provide overall cultivar recommendations for Norway.  相似文献   

17.
Abstract

The ontogenetic changes of N, P, and K contents in leaves of rice, maize, soybean, adzuki bean, potato, and sugar beet were studied as the following results were obtained.

1. N content of rice and maize drastically changed at the primordia formation stage, while that of other crops did not show clear changes depending on the stage of growth.

2. P content of rice and maize was higher in upper leaves than lower leaves, but did not change appreciably in other crops.

3. K content of potato and sugar beet remained constant for a long period of time compared to other crops.

4. P-N relationship in rice and maize distinctly differed between upper and lower leaves; ratio of P content to N content of upper leaves was higher than that of lower leaves.

5. K-N relationship in potato and sugar beet was very different from that in other crops; K content remained constant regardless of the decrease in N content except for the lower leaves.

Thus, as the P-N balance of rice and maize (Gramineae crops) and K-N balance of potato and sugar beet (root crops) showed distinctive characteristics compared to other crops, the physiological significance of the mineral balance must be further investigated.  相似文献   

18.
The use of maize (Zea mays L.) genotypes that are able to utilize nutrients efficiently is an important strategy in the management of plant nutritional status; it is of particular importance with regard to potassium (K) and magnesium (Mg), due to their high requirement and influence on plant growth. The influence of K and Mg fertilizers on certain growth parameters of maize genotypes TM.815 and KL.72.AA, including length, seed in ear, seed weight growth, and nutrient concentration, was determined under field conditions over two successive years. The aim of the experiment was to study the effect of different rates of K and Mg fertilizers on maize genotype plant growth parameters, grain yield, and nutrient accumulation under field conditions.

A split plot design with three replicates was used and each block contained three treatments of 0, 100, and 200 kg ha?1 of K2O and 0, 10, and 20 kg ha?1 of Mg; K2SO4 was used to supply K, and MgSO4 was used for Mg.

Plants that responded to the K fertilizer had an increase in height, yield, and the concentration of K in the leaves and seeds. The addition of K fertilizer increased the concentration of nitrogen (N), iron (Fe), zinc (Zn), manganese (Mn), and K in the plant leaves and increased seed K concentration. Mg fertilizer increased the concentration of N, Fe, copper, and Mn in the leaves; however, it exerted no significant influence on K concentration. The KL.72.AA maize genotype had a higher mean plant height, number of seeds in ear, yield, and N, K, Fe, and Zn concentrations compared to the TM.815 maize genotype. In the experiment, the K fertilizer exerted a statistically significant effect on the leaf and seed K concentration; however, on a statistical basis, the Mg fertilizer did not affect the Mg concentration.  相似文献   

19.
The use of vermicompost as a bio-fertilizer and urea (as chemical fertilizer) under drought stress conditions was tested in this research. Accordingly, a pot experiment was carried out and the seedlings of vetivergrass (Vetiveriazizanioides stapf.) were grown in the greenhouse at Malayer University. The experiment was conducted based on factorial arrangement in a completely randomized design using five replications. Irrigation levels included field capacity (FC) (as control), 60% FC and 30% FC. Vermicompost applications included zero (as control), 40, and 60% which were expressed as VC1, VC2, and VC3. Urea application levels included zero (0), 100, or 200 mg per kg per pot which were expressed as U1, U2, and U3, respectively. The highest and the lowest values of total protein contents (μMg-1 fresh weight (FW)), calcium and magnesium concentrations (mg g?1 dry weight (DW)), and survival capacity (%) of the vetivergrass were found in the FC × VC3 × U3 and 30% FC × VC1 × U1 treatments, respectively, whereas the maximum and the minimum values of essential oil contents (%) were seen in the 60% FC × VC3 × U3 and FC × VC1 × U1 treatments, respectively. A different trend was seen in the changes of total chlorophyll content (%) values and the highest and the lowest values were found in the 60% FC × VC3 × U3 and 30% FC × VC1 × U1 treatments, respectively. However, the root dry weight increased significantly as the soil moisture content, percentage of vermicompost, or urea addition decreased.  相似文献   

20.
Abstract

In order to reduce the damage caused by the late-season drought stress of canola, a factorial split-plot experiment was performed based on the randomized complete blocks design with three replications in Karaj, Iran. The treatments were Potassium sulfate in two levels, including application and non-application of potassium sulfate, irrigation at three levels including normal irrigation (control), restricted irrigation from the flowering and pod formation stage, as factorial were in main plots and winter canola cultivars including Opera, L72, KR1, GKH3705, GKH0224 were in subplots. The simple effect of irrigation and potassium sulfate on all of the studied traits and the simple effect of cultivar on all traits except chlorophyll b were significant. The interaction effect of irrigation?×?cultivar on soluble carbohydrate, stomatal resistance, proline content, chlorophyll a and total chlorophyll content was significant. The interaction effect of irrigation?×?potassium sulfate on the amount of soluble carbohydrates, stomatal resistance and proline content of leaves was significant. In irrigation interruption from the pod formation stage, the promising line of L72, and in irrigation interruption from the flowering stage, the Neptune cultivar exhibited the most positive effect of potassium application on the studied traits. As a result, the application of potassium sulfate in addition to the L72 and Neptune cultivars is recommended in areas similar to the tested area encountering the late-season drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号