首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatments in big sagebrush (Artemisia tridentata Nutt.) are often implemented to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus). These treatments aim to increase the availability of forbs and invertebrates critical to juvenile and adult sage-grouse during the breeding season. However, information regarding the response of forbs in treated sagebrush are often conflicting, dependent on the type of sagebrush community treated and time after treatment. In addition, there is little information on the response of invertebrates to treatments, particularly herbicide treatments in Wyoming big sagebrush (A.t. ssp. wyomingensis Beetle & Young) communities. We evaluated the response of forbs and invertebrates in Wyoming big sagebrush that had been mowed or aerially treated with tebuthiuron compared with untreated reference areas. We also compared forb and invertebrate dry matter (DM) between treated plots and locations used by brood-rearing females. Forb and invertebrate DM in mowed and tebuthiuron treatments did not differ from untreated plots up to 4 yr after treatment and were equal to or less than locations used by brood-rearing grouse up to 2 yr after treatment. Our findings corroborate best available science that suggest treating Wyoming big sagebrush may not increase food availability for sage-grouse.  相似文献   

2.
Sagebrush (Artemisia L.) taxa historically functioned as the keystone species on 1 090 000 km2 of rangeland across the western United States, and Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young) is or was dominant on a substantial amount of this landscape. Wyoming big sagebrush provides habitat for numerous wildlife species. Nevertheless, Wyoming big sagebrush communities are commonly manipulated to decrease shrub cover and density and increase the productivity and diversity of herbaceous plants. We examined relationships between management-directed changes in Wyoming big sagebrush and greater sage-grouse (Centrocercus urophasianus), elk (Cervus elaphus), pronghorn (Antilocapra americana), and mule deer (Odocoileus hemionus), species commonly associated with these ecosystems. We focused on herbicide applications, mechanical treatments, and prescribed burning, because they are commonly applied to large areas in big sagebrush communities, often with the goal to improve wildlife habitats. Specifically, our objective was to identify treatments that either enhance or imperil sagebrush habitats for these wildlife species. The preponderance of literature indicates that habitat management programs that emphasize treating Wyoming big sagebrush are not supported with respect to positive responses by sage-grouse habitats or populations. There is less empirical information on ungulate habitat response to Wyoming big sagebrush treatments, but the value of sagebrush as cover and food to these species is clearly documented. A few studies suggest small-scale treatments (≤ 60-m width) in mountain big sagebrush (Artemisia tridentata ssp. vaseyana [Rydb.] Beetle) may create attractive foraging conditions for brooding sage-grouse, but these may have little relevance to Wyoming big sagebrush. Recommendations or management programs that emphasize treatments to reduce Wyoming big sagebrush could lead to declines of wildlife species. More research is needed to evaluate the response of sagebrush wildlife habitats and populations to treatments, and until that time, managers should refrain from applying them in Wyoming big sagebrush communities.  相似文献   

3.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

4.
Greater sage-grouse (Centrocercus urophasianus) habitat management involves vegetation manipulations to increase or decrease specific habitat components. For sage-grouse habitat management to be most effective, an understanding of the functional response of sage-grouse to changes in resource availability is critical. We investigated temporal variation in diet composition and nutrient content (crude protein, calcium, and phosphorus) of foods consumed by preincubating female sage-grouse relative to food supply and age of hen. We collected 86 preincubating female greater sage-grouse at foraging areas during early (18–31 March) and late (1–12 April) preincubation periods during 2002–2003. Females consumed 22 food types including low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt.), 15 forb species, 2 insect taxa, sagebrush galls, moss, and a trace amount of unidentified grasses. Low sagebrush was the most common food item, but forbs were found in 89% of the crops and composed 30.1% aggregate dry mass (ADM) of the diet. ADM and species composition of female diets were highly variable between collection periods and years, and coincided with temporal variation in forb availability. Adult females consumed more forbs and less low sagebrush compared to yearling females. Because of higher levels of crude protein, calcium, and phosphorus, forbs were important diet components in comparison with low sagebrush, which had the lowest nutrient content of all foods consumed. Our results indicate that increased forb abundance in areas used by female sage-grouse prior to nesting would increase their forb consumption and nutritional status for reproduction. We recommend that managers should emphasize delineation of habitats used by preincubating sage-grouse and evaluate the need for enhancing forb abundance and diversity.  相似文献   

5.
Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented many sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus) are vulnerable to these changes, making habitat monitoring essential to effective management. Conventional ground inventory methods are time consuming (expensive) and have lower data collection potentials than remote sensing. Our study evaluated the feasibility of ground (0.3-mm ground surface distance [GSD]) and aerial imagery (primarily, 1-mm GSD) to assess ground cover for big sagebrush (Artemisia tridentata Nutt.) and other vegetation functional groups important in sage-grouse breeding habitat (lekking, nesting, and brood rearing). We surveyed ∼ 526 km2 of the upper Powder River watershed in Natrona County, Wyoming, USA, a region dominated by Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) communities interspersed with narrow riparian corridors. Our study area was used year-round by sage-grouse and included 16 leks. In June 2010, we acquired aerial images (1-mm resolution) for 3 228 systematic sampling locations; additional images were acquired as rapid-succession bursts where aerial transects crossed riparian areas and for 39 riparian and 39 upland ground locations (0.3-mm resolution) within 3.2-km of leks. We used SamplePoint software to quantify cover for plant taxa and functional groups using all ground images and a systematic sampling of aerial images. Canopy cover of sage-grouse food forbs—as averaged across aerial and ground imagery around all leks—was 1.8% and 7.8% in riparian and 0.5% and 4.0% in upland areas, respectively. Big sagebrush cover was 8.7% from upland aerial images and 9.4% from upland ground images. Aerial and ground imagery provided similar values for bare ground and shrubs in riparian and upland areas, whereas ground imagery provided finer-scale herbaceous-cover data that complemented the aerial imagery. These and other image-derived archival data provide a practical basis for landscape-scale management and are a cost-effective means for monitoring extensive sagebrush habitats.  相似文献   

6.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.  相似文献   

7.
The Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) alliance is the most extensive of the big sagebrush complex in the Intermountain West. There is a lack of information describing vegetation characteristics, diversity, and heterogeneity of the Wyoming big sagebrush alliance. We annually sampled 48 Wyoming big sagebrush plant communities over 10 yr to delineate major vegetation associations and describe their major vegetation characteristics including canopy cover, density, species richness, and yield. Six associations were identified on the basis of dominant or codominant perennial bunchgrass species, using MRPP analysis, and they included ARTRW8 (Wyoming big sagebrush)/PSSP6 (Pseudoroegneria spicata [Pursh] A. Löve, bluebunch wheatgrass), ARTRW8/ACTH7 (Achnatherum thurberianum [Piper] Barkworth, Thurber’s needlegrass), ARTRW8/FEID (Festuca idahoensis Elmer, Idaho fescue), ARTRW8/HECO26 (Hesperostipa comata [Trin. & Rupr.] Barkworth, needle-and-thread), ARTRW8/PSSP6-ACTH7, and ARTRW8/PSSP6-FEID-ACTH7. On average, PSSP6 and FEID associations had the highest total herbaceous cover and annual yields and the HECO26 and ACTH7 associations had the lowest. Perennial forb cover averaged over 5% in PSSP6 and FEID associations and ranged from 0.3% to 3.5% in the other associations. Sagebrush cover was greatest in ACTH7 and PSSP6-ACTH7 and lowest in FEID and HECO26 associations. Habitat suitability criteria for sage-grouse indicated that Wyoming big sagebrush associations at the stand/site level will generally not meet breeding habitat requirements and only attain suitable habitat requirements for other life stages about 50% of the time.  相似文献   

8.
The link between individual variation in resource selection (e.g., functional response) and fitness creates a foundation for understanding wildlife-habitat relationships. Although many anthropogenic activities adversely affect these relationships, it is largely unknown whether projects implemented to benefit wildlife populations actually achieve this outcome. For sagebrush (Artemisia spp.) obligate species such as the greater sage-grouse (Centrocercus urophasianus; sage-grouse), expansion of juniper (Juniperus spp.) and pinyon-pine (Pinus spp.; conifers) woodlands into sagebrush ecosystems has been identified as a conservation threat. This threat is intensified when a sagebrush ecosystem is bounded by naturally unsuitable habitats. As such, federal, state, and private land managers have implemented landscape-level management to remove conifers on thousands of hectares of sagebrush habitat across the western United States. Despite the scale of contemporary conifer treatments, little was previously known whether sage-grouse will occupy these manipulated landscapes and whether occupancy has consequences on fitness components. To address these questions, we monitored nest and brood success rates for 96 radio-marked sage-grouse from 2012-2015 that inhabited conifer-dominated landscapes in the Box Elder Sage-grouse Management Area in Utah where mechanical conifer removal projects were completed. We then linked sage-grouse resource selection to individual nest (n = 95) and brood (n = 56) success by incorporating random-slope Resource Selection Functions as explanatory predictors in a logistic brood success model. Using the novel approach of random slope covariates, we demonstrated that sage-grouse selected for nest and brooding sites closer to conifer removal areas and that the probability of individual nest and brood success declined (β = ? 0.10 and β = ? 0.74, respectively) as sage-grouse females selected sites farther from conifer removal areas. Our research provided the first evidence that mechanical conifer removal treatments can increase suitable available breeding habitats for female sage-grouse and that individuals who occupied these areas experienced enhanced nest and brood success.  相似文献   

9.
Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities of the Intermountain West have been greatly reduced from their historic range as a result of wildfire, agronomic practices, brush control treatments, and weed invasions. The impact of prescribed fall burning Wyoming big sagebrush has not been well quantified. Treatments were sagebrush removed with burning (burned) and sagebrush present (control). Treatments were applied to 0.4-ha plots at 6 sites. Biomass production, vegetation cover, perennial herbaceous vegetation diversity, soil water content, soil inorganic nitrogen (NO-3, NH+4), total soil nitrogen (N), total soil carbon (C), and soil organic matter (OM) were compared between treatments in the first 2 years postburn. In 2003 and 2004, total (shrub and herbaceous) aboveground annual biomass production was 2.3 and 1.2 times greater, respectively, in the control compared to the burned treatment. In the upper 15 cm of the soil profile, inorganic N concentrations were greater in the burned than control treatment, while soil water, at least in the spring, was greater in the control than burned treatment. Regardless, greater herbaceous aboveground annual production and cover in the burned treatment indicated that resources were more available to herbaceous vegetation in the burned than the control treatment. Exotic annual grasses did not increase with the burn treatment. Our results suggest in some instances that late seral Wyoming big sagebrush plant communities can be prescribed fall burned to increase livestock forage or alter wildlife habitat without exotic annual grass invasion in the first 2 years postburn. However, long-term evaluation at multiple sites across a larger area is needed to better quantify the effects of prescribed fall burning on these communities. Thus, caution is advised because of the value of Wyoming big sagebrush plant communities to wildlife and the threat of invasive plants.  相似文献   

10.
Monotypic stands of crested wheatgrass (Agropyron cristatum [L] Gaertm. and Agropyron desertorum [Fisch.] Schult.), an introduced grass, occupy vast expanses of the sagebrush steppe. Efforts to improve habitat for sagebrush-associated wildlife by establishing a diverse community of native vegetation in crested wheatgrass stands have largely failed. Instead of concentrating on a diversity of species, we evaluated the potential to restore the foundation species, Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S. L. Welsh), to these communities. We investigated the establishment of Wyoming big sagebrush into six crested wheatgrass stands (sites) by broadcast seeding and planting seedling sagebrush across varying levels of crested wheatgrass control with glyphosate. Planted sagebrush seedlings survived at high rates (~ 70% planted sagebrush survival 3 yr postplanting), even without crested wheatgrass control. However, most attempts to establish sagebrush by broadcast seeding failed. Only at high levels of crested wheatgrass control did a few sagebrush plants establish from broadcasted seed. Sagebrush density and cover were greater with planting seedlings than broadcast seeding. Sagebrush cover, height, and canopy area were greater at higher levels of crested wheatgrass control. High levels of crested wheatgrass control also created an opportunity for exotic annuals to increase. Crested wheatgrass rapidly recovered after glyphosate control treatments, which suggests multiple treatments may be needed to effectively control crested wheatgrass. Our results suggest that planting sagebrush seedlings can structurally diversify monotypic crested wheatgrass stands to provide habitat for sagebrush-associated wildlife. Though this is not the full diversity of native functional groups representative of the sagebrush steppe, it is a substantial improvement over other efforts that have largely failed to alter these plant communities. We also hypothesize that planting sagebrush seedlings in patches or strips may provide a relatively inexpensive method to facilitate sagebrush recovery across vast landscapes where sagebrush has been lost.  相似文献   

11.
Recent and unprecedented scale of greater sage-grouse (Centrocercus urophasianus) conservation in the American West enables assessment of community-level benefits afforded to other sagebrush-obligate species. We use North American Breeding Bird Survey (BBS) count data and machine-learning to assess predictors influencing spatial distribution and abundance of three sagebrush-obligate songbirds (Brewer’s sparrow [Spizella breweri], sagebrush sparrow [Artemisiospiza nevadensis], and sage thrasher [Oreoscoptes montanus]). We quantified co-occurrence of songbird abundance with sage-grouse lek distributions using point pattern analyses and evaluated the concurrence of songbird abundance within sage-grouse habitat restoration and landscape protection. Sagebrush land-cover predictors were positively associated with the abundance of each songbird species in models that explained 16 ? 37% of variation in BBS route level counts. Individual songbird models identified an apparent 40% threshold in sagebrush land-cover, over which songbird abundances nearly doubled. Songbird abundances were positively associated with sage-grouse distributions (P < 0.01); range-wide, landscapes supporting > 50% of males on leks also harbored 13 ? 19% higher densities of songbirds compared with range-wide mean densities. Eighty-five percent of the conifer removal conducted through the Sage Grouse Initiative coincided with high to moderate Brewer’s sparrow abundance. Wyoming’s landscape protection (i.e., “core area”) strategy for sage-grouse encompasses half the high to moderate abundance sagebrush sparrow and sage thrasher populations. In the Great Basin half the high to moderate abundance sagebrush sparrow and sage thrasher populations coincide with sage-grouse Fire and Invasive Assessment Tool priorities, where conservation actions are being focused in an attempt to reduce the threat of wildfire and invasive plants. Our work illustrates spatially targeted actions being implemented ostensibly for sage-grouse largely overlap high abundance centers for three sagebrush obligate passerines and are likely providing significant conservation benefits for less well-known sagebrush songbirds and other sagebrush-associated wildlife.  相似文献   

12.
Conifer woodlands expanding into sage-steppe (Artemisia spp.) are a threat to sagebrush obligate species including the imperiled greater sage-grouse (Centrocercus urophasianus). Conifer removal is accelerating rapidly despite a lack of empirical evidence to assess outcomes to grouse. Using a before-after-control-impact design, we evaluated short-term effects of conifer removal on nesting habitat use by monitoring 262 sage-grouse nests in the northern Great Basin during 2010–2014. Tree removal made available for nesting an additional 28% of the treatment landscape by expanding habitat an estimated 9603 ha (3201 ha [± 480 SE] annually). Relative probability of nesting in newly restored sites increased by 22% annually, and females were 43% more likely to nest within 1000 m of treatments. From 2011 (pretreatment) to 2014 (3 yr after treatments began), 29% of the marked population (9.5% [± 1.2 SE] annually) had shifted its nesting activities into mountain big sagebrush habitats that were cleared of encroaching conifer. Grouping treatments likely contributed to beneficial outcomes for grouse as individual removal projects averaged just 87 ha in size but cumulatively covered a fifth of the study area. Collaboratively identifying future priority watersheds and implementing treatments across public and private ownerships is vital to effectively restore the sage-steppe ecosystem for nesting sage-grouse.  相似文献   

13.
The optimal frequency of tebuthiuron (N-[5-(dimetylethyl)-1,3,4-thiadiazol-2yl]-N,N′-dimethylurea) treatments was investigated for Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young) when added forage for livestock and wildlife are considered to be the economic benefit of the treatment. Data collected at 8 northwest New Mexico study sites were used to define key relationships for the economic analysis. This long-lived sagebrush control practice was found to be a viable investment for landowners who participate in available cost-share programs. At productive sites, where average herbaceous production increased to over 700 kg/ha following big sagebrush control, the economic value of added forage justified the total cost of the herbicide treatment. Tebuthiuron rates higher than 0.5 kg active ingredient/ha lengthened the expected life of the brush control treatment, but the extended life did not justify the added cost. The threshold abundance of sagebrush needed for economical control was found to be variable, depending on treatment cost, study site, and the economic value of forage. With a 50:50 cost-share arrangement and with forage valued at $7/AUM, the economic sagebrush canopy threshold from the livestock grazing perspective was estimated to range between 6% and 14%, depending on site productivity. A second brush control treatment would optimally be implemented before forage production was fully depleted by the recovering brush canopy. Because some native fauna are closely tied to big sagebrush plant communities and benefit from the shrubs’ presence, the trade-off in the desired abundance of big sagebrush must be weighed between economic considerations and other resource values of interest.  相似文献   

14.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma &lsqb;Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

15.
If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass &lsqb;Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants &spigt; 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences on plant communities.  相似文献   

16.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

17.
Both fire and conifer encroachment can markedly alter big sagebrush communities and thus habitat quality and quantity for wildlife. We investigated how conifer encroachment and spring prescribed burning affected forage and cover resources for a sagebrush specialist, the pygmy rabbit. We studied these dynamics at spring prescribed burns in southwestern Montana and eastern Idaho during the summer of 2011. Within each spring prescribed burn, we established plots that described the habitat conditions for pygmy rabbits (forage plant biomass and habitat components that influence predation risk) in areas that were burned, adjacent areas of conifer encroachment, and areas that were neither burned nor encroached. We analyzed the data for significant differences in habitat conditions between the paired reference and encroachment plots and modeled when the burned areas would approximate the conditions on the paired reference plots. Biomass of forage plants and habitat components that reduce predation risk differed between undisturbed reference plots and areas that were either burned or encroached with > 30% conifer canopy. Our models estimated that 13–27 yr were required for a spring prescribed burn to provide levels of cover and forage resources similar to sagebrush steppe reference plots. We documented that vegetation composition was associated with the plot designations (burn, reference, or conifer encroachment), but not with other abiotic factors, such as soil texture, aspect, or study site; this suggested that the documented differences in habitat were related to the treatments, rather than being site-specific characteristics. The information from this study can contribute to habitat management plans for high-elevation mountain big sagebrush sites where conifer encroachment is altering habitat for sagebrush-dependent wildlife species.  相似文献   

18.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

19.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

20.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号