首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To investigate the effects of silent information regulator 1 (SIRT1) on high glucose-induced acetylation of NF-κB p65 subunit and its protective role in rat mesangial cells. METHODS: Rat mesangial cells were cultured in DMEM supplemented with 10% FBS and were divided into control group, mannitol group, high glucose group, resveratrol group and SIRT1 RNAi group. The cell viability was determined by MTT assay. The mRNA expression of SIRT1, monocyte chemoattratant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1-1), tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1) was analyzed by real-time quantitative PCR. The protein expression of SIRT1 and the acetylation of NF-κB p65 subunit were determined by Western blotting. The protein concentrations of MCP-1, VCAM-1, TNF-α, TGF-β1 and malondialdehyde (MDA) were detected by ELISA. RESULTS: The cell viability, superoxide dismutase (SOD) activity, and the expression of SIRT1 at mRNA and protein levels were decreased by high glucose treatment as compared with control group. The acetylation of NF-κB p65 subunit was significantly increased after interfered with high glucose, resulting in the increase in the secretion of MCP-1, VCAM-1, TNF-α and TGF-β1. Resveratrol decreased high glucose-induced acetylation of NF-κB p65 subunit. However, silencing SIRT1 significantly enhanced the acetylation of NF-κB p65 subunit and the expression of MCP-1, VCAM-1, TNF-α and TGF-β1. CONCLUSION: SIRT1 remarkably inhibits the inflammatory reactions by deacetylating NF-κB p65, suggesting that SIRT1 is a possible target for preventing diabetic nephropathy.  相似文献   

2.
AIM: To investigate the effects of silent information regulator 1 (SIRT1) over-expression on the apoptosis and the level of reactive oxygen species (ROS) in high glucose-induced H9c2 cardiomyocytes. METHODS: H9c2 cardiomyocytes were transfected with empty plasmid (pcDNA3.1-NC) and SIRT1 over-expression plasmid (pcDNA3.1-SIRT1), and then stimulated by high glucose. The H9c2 cells were divided into control group, high glucose group, high glucose + pcDNA3.1-NC group and high glucose + pcDNA3.1-SIRT1 group. The expression of SIRT1 at mRNA and protein levels in each group was determined by qPCR and Western blot. The viability of the cells was measured by MTT assay. The apoptotic rate was analyzed by flow cytometry. The protein levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K, AKT and phosphorylated AKT were examined by Western blot. RESULTS: SIRT1 was significantly decreased in high glucose-induced H9c2 cardiomyocytes, the cell viability was significantly decreased compared with control group, while the ROS levels and apoptotic rate were increased, and the phosphorylated PI3K and AKT protein levels were down-regulated (P<0.05). Over-expression of SIRT1 significantly promoted the viability of H9c2 cardiomyocytes induced by high glucose, decreased the ROS levels and apoptotic rate, and up-regulated phosphorylated PI3K and AKT protein levels (P<0.05). CONCLUSION: SIRT1 over-expression reverses the decrease in the viability of high glucose-stimulated H9c2 cardiomyocytes, and the increases in apoptotic rate and oxidative stress by regulating PI3K/AKT signaling pathway.  相似文献   

3.
AIM: To investigate the effect of microRNA-204 (miR-204) on the proliferation of Hodgkin lymphoma cells and the underlying mechanism. METHODS: The expression of miR-204 and Sirt1 mRNA in Hodgkin lymphoma tissues was detected by RT-qPCR. After transfection with miR-204 mimic, Sirt1 siRNA and miR-204 mimic+pcDNA3.1-Sirt1 into the L428 cells, the cell viability and BrdU incorporation were measured by CCK-8 assay and BrdU assay, respectively. The protein levels of Sirt1 and acetylated p53 (ac-p53) were determined by Western blot.The targeting relationship between miR-204 and Sirt1 was verified by double luciferase reporter assay. RESULTS: The low expression of miR-204 and the high mRNA expression of Sirt1 were found in the Hodgkin lymphoma tissues. Compared with control group, the cell viability, BrdU incorporation and the protein levels of Sirt1 and ac-p53 were significantly decreased after L428 cells were transfected with miR-204 mimic or Sirt1 siRNA (P<0.05). Compared with miR-204 mimic alone group, the cell viability, BrdU incorporation and the protein levels of Sirt1 and ac-p53 were increased after L428 cells were co-transfected with miR-204 mimic and pcDNA3.1-Sirt1 (P<0.05). The results of double luciferase reporter assay confiermed that Sirt1 was the target gene of miR-204. CONCLUSION: The inhibitory effect of miR-204 on the proliferation of L428 cells may be achieved by inhibiting the expression of Sirt1 and promoting the up-regulation of ac-p53.  相似文献   

4.
AIM: To investigate the effect of microRNA (miR)-451 by targeting proteasome subunit β type 8 (Psmb8) on the inflammatory responses in mouse glomerular mesangial cells (MCs) under high-and low-glucose conditions. METHODS: The expression levels of miR-451, IL-18 mRNA and TNF-α mRNA were detected by qPCR. The protein expression levels of IL-18, TNF-α and Psmb8 were determined by Western blot when miR-451 was over-expressed and down-expressed in the MCs. Moreover, the expression of IL-18 and TNF-α was detected when Psmb8 was silenced by si-Psmb8 in MCs. RESULTS: The expression of miR-451 was significantly decreased in the MCs treated with high glucose compared with low glucose group (P<0.01). However, the expression of Psmb8 was increased in high glucose group as compared with low glucose group (P<0.01). Moreover, the expression levels of Psmb8, IL-18 and TNF-α were significantly decreased when miR-451 was over-expressed in high glucose group (P<0.01). Additionally, the expression levels of IL-18 and TNF-α were significantly reduced when Psmb8 was silenced in the MCs under high glucose condition. CONCLUSION: miR-451 reduces the expression of inflammatory factors via targeting Psmb8 in the MCs under high glucose condition. Therefore, miR-451 may play a role in inflammation of diabetic nephropathy.  相似文献   

5.
AIM:To investigate the effect of HMGA2 down-regulation on apoptosis and Notch signaling pathway in renal tubular epithelial cells exposed to high glucose (HG). METHODS:D-glucose at 5, 10, 20 and 30 mmol/L was used to stimulate human renal tubular epithelial HK-2 cells for 2 h, and D-glucose at 30 mmol/L was used to stimulate the HK-2 cells for 10 min, 60 min and 120 min. The protein expression of HMGA2 was determined by Western blot. The HK-2 cells were divided into normal glucose (NG) group, HG group, HG+si-HMGA2 group and HG+NC group, in which siRNA was transfected by LipofectamineTM 2000 for 48 h. Flow cytometry was used to analyze the apoptotic rate, reactive oxygen species (ROS) assay kit was used to detect ROS content, and Western blot was used to detect the protein levels of Notch1, Hes1 and Bcl-2. The HK-2 cells were treated with the Notch signaling pathway inhibitor DAPT, and then the cells were divided into HG group, HG+DAPT group and HG+si-HMGA2+DAPT group. The apoptotic rate was analyzed by flow cytometry. RESULTS:Exposure of the HK-2 cells to D-glucose at different concentrations for different time significantly increased the expression of HMGA2 (P<0.05). Compared with NG group, the protein expression of HMGA2, Notch1 and Hes1 in HG group was increased, the expression of Bcl-2/Bax was decreased, the apoptotic rate was increased, and the content of ROS was increased obviously (P<0.05). Compared with HG group, the protein expression of HMGA2, Notch1 and Hes1 of HG+si-HMGA2 group was decreased, the expression of Bcl-2/Bax was increased, the apoptotic rate was decreased, and the content of ROS was decreased significantly (P<0.05). The apoptotic rate in HG+DAPT group was significantly lower than that in HG group, while the apoptotic rate in HG+si-HMGA2+DAPT group was significantly lower than that in HG+DAPT group (P<0.05). CONCLUSION:Down-regulation of HMGA2 expression inhibits the apoptosis of renal tubular epithelial cells by regulating Notch signaling pathway and decreasing ROS production.  相似文献   

6.
AIM:To detect the effect and potential mechanism of microRNA-34a (miR-34a) on the senescence of bone marrow-derived mesenchymal stem cells (BMSCs) under high glucose condition. METHODS:BMSCs were isolated and cultured from 60~80 g male SD rats. The BMSCs were divided into 5 groups:normal glucose(NG) group, high glucose(HG) group, HG+miR-34a mimic group, HG+miR-34a NC group and HG+miR-34a inhibitor group. In order to confirm whether miR-34a regulated the senescence of BMSCs under high glucose condition by regulating the expression of silent information regulator 1(SIRT1), in addition to the above groups, HG+siRNA-SIRT1 group, HG+siRNA-NT group and HG+miR-34a inhibitor+siRNA-SIRT1 group were added. The expression of miR-34a and SIRT1 mRNA was detected by RT-qPCR. CCK-8 assay and senescence-associated β-galactosidase assay were used to detect cell viability and senescence, respectively. The protein expression of SIRT1, forkhead box O3a (FOXO3a) and P21 in the BMSCs was analyzed by Western blot. RESULTS:The expression of miR-34a in HG group was increased significantly compared with NG group (P<0.01), and long-term exposure of the BMSCs to high glucose lead to decreased cell viability and increased senescence (P<0.05). Compared with HG+miR-34a NC group, the cell viability in HG+miR-34a mimic group was decreased significantly (P<0.01), the senescence of BMSCs was increased significantly (P<0.01), the protein expression of SIRT1 was decreased significantly (P<0.01) and the protein expression of FOXO3a was increased significantly (P<0.01). However, inhibition of miR-34a expression showed the opposite effect to miR-34a mimic. Similar to the HG+miR-34a mimic group, the protein expression of P21 and FOXO3a in HG+siRNA-SIRT1 group were significantly higher than that in HG group (P<0.01). After adding siRNA-SIRT1 into HG+miR-34a inhibitor group, the inhibitory effect of the miR-34a inhibitor on the expression of P21 and FOXO3a in BMSCs were partly weakened (P<0.05). CONCLUSION:miR-34a regulate the senescence of BMSCs under high glucose condition by regulating the expression of SIRT1.  相似文献   

7.
AIM: To investigate the expression of microRNA-141 (miR-141) in human hepatocellular carcinoma (HCC) cell line SMMC-7721 and normal hepatocyte line HL-7702, and to analyze the effect of abnormal expression of miR-141 on the malignant biological behaviors of human hepatocarcinoma cells. METHODS: The RNA from SMMC-7721 cells and HL-7702 cells was extracted. SYBR Green real-time PCR was performed to detect the expression of miR-141. Synthetic miR-141 mimic and its negative control were transfected into the SMMC-7721 cells, and miR-141 inhibitor and its negative control were transfected into the HL-7702 cells by the method of Lipofectamine. After transfection, MTS assay and BrdU-ELISA were employed to evaluate the effect of miR-141 on the cell proliferation. Flow cytometry was used to detect cell cycle and apoptosis. The changes of migration ability were investigated by Transwell invasion assay. RESULTS: The expression of miR-141 in the SMMC-7721 cells was significantly lower than that in the HL-7702 cells (P < 0.05). Compared with blank group, Lipofectamine group and negative control group, the proliferation of the SMMC-7721 cells transfected with 25 nmol/L miR-141 mimic was significantly inhibited in a time-dependent manner (P < 0.05). The percentages of G1 phase cells and early apoptotic rate were significantly increased when miR-141 was up-regulated, but the migration ability was inhibited (P < 0.05). Compared with blank group, Lipofectamine group and negative control group, the proliferation of HL-7702 cells transfected with 50 nmol/L miR-141 inhibitor was significantly increased in a time-dependent manner (P < 0.05). When miR-141 was down-regulated, the percentages of G1 phase cells and early apoptotic rate were significantly decreased, but the migration ability was enhanced (P < 0.05). CONCLUSION: miR-141 is down-regulated in human hepatocarcinoma cell line. Up-regulation of miR-141 will not only inhibit cell proliferation and migration ability, but also affect the cell cycle and apoptosis of SMMC-7721 cells. miR-141 may function as a tumor suppressor gene during HCC development.  相似文献   

8.
9.
AIM:To investigate the effect of salvianolic acid B (Sal B) on high glucose-induced phenotypic transition and extracellular matrix (ECM) secretion in human glomerular mesangial cells (HGMCs) and the underlying mechanisms. METHODS:HGMCs were randomly divided into control group, high glucose group and high glucose plus high dose, medium dose and low dose of Sal B groups. The HGMCs except those in control group were exposed to high glucose (33.3 mmol/L) for 72 h, while those in Sal B groups were co-incubated with indicated concentrations of Sal B. The protein levels of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2 and p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. The secretion levels of collagen type I (Col I), collagen type Ⅲ (Col Ⅲ), fibronectin (FN) and laminin (LN) were measured by ELISA. RESULTS:Exposure to high glucose markedly increased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs (P<0.01). The phosphorylation levels of Smad2 and p38 MAPK were also significantly increased (P<0.01). Co-incubation with Sal B evidently decreased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs induced by high glucose (P<0.05 or P<0.01). The phosphorylated levels of Smad2 and p38 MAPK were also reduced noticeably (P<0.05 or P<0.01). CONCLUSION:Sal B significantly suppresses high glucose-induced phenotypic transition and ECM secretion in the HGMCs, which might be attributed, at least partly, to inhibition of TGF-β1/Smad signaling pathway and p38 MAPK activation.  相似文献   

10.
AIM: To observe the effects of edaravone on high glucose-induced apoptosis of SH-SY5Y cells and its potential mechanism. METHODS: The SH-SY5Y cells were cultured in the DMEM medium with 100 mmol/L glucose and 100 μmol/L edaravone for 24 h. The viability of the SH-SY5Y cells was detected by MTT assay. The levels of ROS in the cells were determined by DCFH-DA fluorescent probing. The apoptotic rates of the cells were analyzed by flow cytometry. The protein expression of Bax and Bcl-2 in the cells were detected by Western blot. The expression levels of micro-RNA-25 (miR-25) were determined by real-time PCR. To further clarify the target sites of edaravone on inhibiting apoptosis induced by high glucose, miR-25 inhibitor was applied to the SH-SY5Y cells and the activity of caspase-3 was measured.RESULTS: Compared with control group, the cell viability was decreased significantly in model group, and the ROS level was increased significantly. The protein expression of Bax was up-regulated significantly, while the expression levels of Bcl-2 and miR-25 were significantly down-regulated. Compared with model group, the cell viability was increased significantly in edaravone group. The ROS level was decreased significantly. Meanwhile, the expression of Bax was down-regulated, while the expression of Bcl-2 and miR-25 was up-regulated with statistical significance. The caspase-3 activity of the cells incubated with 100 mmol/L glucose and miR-25 inhibitor was increased. However, no alteration of caspase-3 activity with edaravone added simultaneously was observed. CONCLUSION: Edaravone inhibits the apoptosis of SH-SY5Y cells induced by high glucose with the potential target site of miR-25.  相似文献   

11.
AIM: To explore the relationship and molecular mechanism between microRNA-21(miR-21) and Schwann cells (SC) following peripheral nerve injury. METHODS: The mRNA expression of miR-21 and phosphatase and tensin homologue deleted on chromosome ten (PTEN) in animal model were detected by real-time PCR. The over-expression of miR-21 and inhibition of miR-21 expression in the Schwann cells according to transfection of lentiviral vectors were performed, the nonspecific miRNA was used as a negative control (NC). The cell apoptosis was measured by flow cytometry. The mRNA expression of miR-21 and PTEN in the cells was detected by real-time PCR. The protein expression of PTEN and cleaved caspase-3 was determined by Western blot. RESULTS: The level of miR-21 was significantly higher and the mRNA level of PTEN was significantly lower in the model of nerve injury than those in control group. miR-21 over-expression decreased the number of apoptotic Schwann cells compared with NC-SC. The mRNA expression of PTEN was down-regulated by over-expression of miR-21. The protein expression of PTEN and cleaved caspase-3 was down-regulated by over-expression of miR-21(P<0.05). CONCLUSION: miR-21 may play an important role in the peripheral nerve injury through inhibiting apoptosis of Schwann cells by down-regulating the expression of PTEN.  相似文献   

12.
AIM: To observe the expression of Snail1 and insulin-like growth factor-1 (IGF-1) in NRK-52E cells induced by high glucose, and to investigate the relationship of Snail1 and IGF-1 in the mechanism of epithelial to mesenchymal transition (EMT) in diabetic kidney disease (DKD).METHODS: The NRK-52E cells were treated with Snail1 siRNA and IGF-1 siRNA after cultured with high glucose medium for 72 h, and divided into control group, high glucose group, non-targeting (NT) siRNA group, Snail1 RNAi group and IGF-1 RNAi group. The cells were harvested at 48 h and 72 h. Real-time PCR was used to detect the mRNA expression of Snail1, IGF-1, E-cadherin and fibronectin (FN), and the protein levels were determined by immunofluorescence staining.RESULTS: Compared with control group, the expression of E-cadherin at mRNA and protein levels declined after stimulation with high glucose (P<0.01), while that of FN was elevated (P<0.01). Meanwhile, the mRNA and protein levels of Snail1 and IGF-1 were markedly increased (P<0.01).The expression of E-cadherin at mRNA and protein levels was improved in Snail1 RNAi group as compared with high glucose group(P<0.01), while that of FN, IGF-1 and Snail1 was significantly down-regulated (P<0.01). The same changes were observed in IGF-1 RNAi group (P<0.01). The protein expression of each factor in NT group had no significant change as compared with high glucose group (P>0.05). Pearson correlation analysis showed a close positive relationship between the expression of Snail1 and IGF-1 protein (r=0.852, P<0.01).CONCLUSION: Snail1 may facilitate DKD development by regulating IGF-1 in the process of EMT.  相似文献   

13.
AIM To investigate the effect of sinomenine (SIN) on the apoptosis of human rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and its molecular mechanism. METHODS Human RA FLS were isolated and cultured. The cells treated with lipopolysaccharide (LPS) at 100 mg/L was recorded as LPS group. The cells treated with SIN at 3.2 mmol/L and LPS at 100 mg/L were recorded as LPS+SIN group. The cells without any treatment served as blank group. The cells transfected with miR-con, miR-23b-3p, si-con and si-fibroblast growth factor 9 (FGF9) and treated with 100 mg/L LPS were recorded as LPS+miR-con group, LPS+miR-23b-3p group, LPS+si-con group and LPS+si-FGF9 group, respectively. The anti-miR-con, anti-miR-23b-3p, pcDNA and pcDNA-FGF9 were also transfected into RA FLS, and then the cells were treated with SIN at 3.2 mmol/L and LPS at 100 μg/mL. These cells were recorded as LPS+SIN+anti-miR-con group, LPS+SIN+anti-miR-23b-3p group, LPS+SIN+pcDNA group, LPS+SIN+pcDNA-FGF9 group, respectively. The cell viability was measured by CCK-8 assay. The number of colonies was accessed by colony formation experiment. The protein levels of FGF9, cleaved caspase-3, Bax and Bcl-2 were determined by Western blot. The apoptosis was analyzed by flow cytometry. The expression of miR-23b-3p and FGF9 mRNA was detected by RT-qPCR. Dual-luciferase reporter assay was used to verify the targeting relationship between miR-23b-3p and FGF9. RESULTS Treatment with SIN promoted LPS-induced apoptosis of RA FLS, inhibited cell proliferation, up-regulated miR-23b-3p expression, and down-regulated FGF9 expression. miR-23b-3p targeted FGF9. Over-expression of miR-23b-3p or silencing of FGF9 inhibited LPS-induced proliferation and enhanced apoptosis of the RA FLS. Interfering with miR-23b-3p or over-expression of FGF9 reversed the effects of SIN on the proliferation and apoptosis of LPS-induced RA FLS. CONCLUSION Sinomenine induces RA FLS apoptosis and inhibits cell proliferation through miR-23b-3p/FGF9 signaling.  相似文献   

14.
AIM: To investigate the effect of hydrogen sulfide (H2S) on high glucose (HG)-induced injury of the mouse podocyte cell line MPC5. METHODS: The cultured MPC5 cells were randomly divided into 4 groups: HG group, normal glucose (NG) group, NG+DL-propargylglycine (PPG) group, and HG+NaHS group. After treated for a certain time, the cells were collected for further detection. The expression of zonula occludens-2 (ZO-2), nephrin, β-catenin and cystathionine γ-lyase (CSE) was determined by Western blotting. RESULTS: High glucose significantly reduced the expression of nephrin, ZO-2 and CSE (P<0.05), while the level of β-catenin was elevated obviously (P<0.05), all in a time-dependent manner. NG+PPG inhibited the levels of ZO-2 and nephrin significantly (P<0.05), and increased the level of β-catenin (P<0.05), all in a PPG concentration-dependent manner. HG+NaHS induced a more significant increase in the levels of ZO-2 and nephrin as compared with HG group (P<0.01), whereas a severe reduction of β-catenin in HG+NaHS group was observed as compared with HG group. Compared with NG group, the expression of ZO-2 and nephrin was decreased obviously, and the level of β-catenin was increased in HG+NaHS group. CONCLUSION: Down-regulation of CSE contributes to hyperglycemia-induced podocyte injury. Exogenous H2S protects against hyperglycemia-induced podocyte injury, possibly through up-regulation of ZO-2 and subsequent suppression of Wnt/β-catenin pathway.  相似文献   

15.
16.
AIM: To investigate the effect of microRNA-24-3p (miR-24-3p) on the viability and apoptosis of esophageal cancer cells. METHODS: The expression of miR-24-3p and KLF6 mRNA in the esophageal cancer cells TE11, Eca109 and EC9706 were detected by RT-qPCR. The protein expression of KLF6 was determined by Western blot. EC9706 cells were transfected with anti-miR-24-3p and KLF6 siRNA. The cell viability was measured by MTT assay, the apoptotic rate was analyzed by flow cytometry, and the proliferation, apoptosis and IL-6/STAT3 signaling pathways related proteins were determined by Western blot. The level of IL-6 was measured by ELISA. The dual luciferase reporter gene assay was used to verify the relationship between miR-24-3p and KLF6. RESULTS: The levels of miR-24-3p were up-regulated in the esophageal cancer cells TE11, Eca109 and EC9706 (P < 0.05), and the expression of KLF6 at mRNA and protein levels was down-regulated (P < 0.05). Knock-down of miR-24-3p expression inhibited the cell viability, induced apoptosis, and inhibited the protein levels of CDK4, cyclin D1, CDC25A, p-STAT3, Bcl-2 and IL-6, and promoted the protein expression of caspase-3 and Bax in EC9706 cells. CONCLUSION: miR-24-3p targets KLF6 gene to affect the viability and apoptosis of esophageal cancer cells by regulating IL-6/STAT3 signaling pathway.  相似文献   

17.
AIMTo investigate whether Rho-associated coiled-coil kinase (ROCK) is involved in high glucose-induced apoptosis of primary cardiomyocytes by regulating PI3K/Akt signaling pathway. METHODSPrimary Wistar rat cardiomyocytes were cultured and identified by α-sarcomeric actin (α-SCA) immunohistochemistry. Cardiomyocytes were treated with 5.5, 33 and 40 mmol/L glucose for 48 h. The cell viability was measured by MTT assay, and the mRNA expression of ROCK1 and ROCK2 in the cardiomyocytes was detected by RT-qPCR. Flow cytometry was used to analyze the apoptosis of the cardiomyocytes. The protein levels of ROCK1, ROCK2, cleaved caspase-3, Bcl-2, PI3K, Akt and p-Akt were determined by Western blot. In order to confirm the regulatory effect of ROCKs on PI3K/Akt signaling pathway, the cells were divided into control group (5.5 mmol/L glucose), high glucose group (33 mmol/L glucose) and high glucose+Y27632 (ROCK inhibitor) group. Western blot was used to detect the protein levels of ROCK1, ROCK2, PI3K, Akt and p-Akt. RESULTSAfter 48 h of high glucose exposure, the values of relative cell viability in 33 and 40 mmol/L glucose groups were (79.71±2.43)% and (68.41±7.49)%, respectively, both of which were significantly decreased compared with normal control group (P<0.05). After 48 h of high glucose exposure, the relative mRNA levels of ROCK1 and ROCK2 in 33 and 40 mmol/L glucose groups were significantly increased compared with normal control group (P<0.05). Compared with normal control group, the apoptotic rate in 33 and 40 mmol/L glucose groups was increased significantly (P<0.05). Compared with normal control group, the protein expression of ROCK1, ROCK2 and cleaved caspase-3 in 33 and 40 mmol/L glucose groups was increased (P<0.05), while the protein expression of Bcl-2 was decreased (P<0.05). No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed, while the protein level of p-Akt in 33 and 40 mmol/L glucose groups was decreased compared with normal control group (P<0.05). Compared with high glucose group, the expression of ROCK1 and ROCK2 was decreased in high glucose+Y27632 group. No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed. Compared with normal control group, the protein level of p-Akt in high glucose group was decreased, and the protein level of p-Akt in high glucose+Y27632 group was increased significantly compared with high glucose group. CONCLUSION Under high glucose environment, ROCK may reduce the level of p-Akt by inhibiting the PI3K/Akt signaling pathway, thus promoting the apoptosis of cardiomyocytes.  相似文献   

18.
AIM:To investigate the effects of microRNA-141 (miRNA-141) regulating Nrf2/ARE signaling pathways by targeting Keap1 on the viability of T47D breast cancer cells. METHODS:The breast cancer T47D cells were transfected with miRNA-141 mimic and the negative control sequence (negative control, NC), as miRNA-141 group and NC group, respectively, and the cell without transfection was used as control group. Real-time PCR was used to detect the expression level of miRNA-141. The cell viability was measured by MTT assay. Fluorescent probe 2',7'-dihydrodichlorofluorescein diacetate ester (DCFH-DA) was used to detect cell reactive oxygen species (ROS) level. The protein expression levels of Keap1, nuclear factor E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPx1) were determined by Western blot. Dual luciferase assay was used to analyze relationship between miRNA-141 and Keap1. RESULTS:After the cells were transfected with miRNA-141 mimic, the expression of miRNA-141 was obviously higher in miRNA-141 group than that in other groups (P<0.05). The cell viability, ROS level and Keap1 protein expression were significantly decreased, while the Nrf2 protein in the nucleus and antioxidants SOD2 and GPx1 expression were up-regulated in miRNA-141 group. Moreover, the luciferase reporter assay demonstrated that Keap1 was the target gene of miRNA-141. CONCLUSION:miRNA-141 may negatively regulates Keap1 and activates Nrf2/ARE signaling pathways, which inhibits the viability of breast cancer cells via inducing the expression of antioxidant enzymes to reduce the oxidative stress levels of the cells.  相似文献   

19.
AIM: To investigate the effect and mechanism of osthole on increasing the cytotoxicity of doxorubicin (DOX) to prostate cancer cells. METHODS: MTT assay was performed to evaluate the viability of LNCaP cells treated with osthole and DOX. The protein expression of silent information regulator 1 (SIRT1), p53, acetylated p53 and Puma, as well as release of cytochrome C and activation of caspase-9 and caspase-3 in the LNCaP cells treated with osthole and DOX were determined by Western blot. The apoptosis of the LNCaP cells treated with osthole and DOX was analyzed by flow cytometry. RESULTS: Osthole significantly increased the cytotoxicity of DOX against p53-wildtype prostate cancer cell line LNCaP. Osthole significantly inhibited the expression of SIRT1 in the LNCaP cells. Transfection with SIRT1 plasmid decreased the cytotoxicity of osthole and DOX co-treatment against LNCaP cells. Combination with osthole and DOX significantly induced the over-expression and acetylation of p53. Transfection with p53 siRNA significantly decreased the synergistic effect of osthole on cytotoxicity of DOX-treated LNCaP cells. Combination with osthole and DOX significantly induced the release of cytochrome C into the cytoplasm from mitochondria, followed by activation of caspase-9 and its downstream molecule caspase-3, thus leading to cell apoptosis in the LNCaP cells. CONCLUSION: Osthole promotes the p53-dependent apoptosis in DOX-treated prostate cancer LNCaP cells by down-regulating the expression of SIRT1.  相似文献   

20.
AIM: To investigate the effect of vitamin D3 up-regulated protein 1 (VDUP-1) on apoptosis of renal tubular epithelial cells induced by high glucose and its mechanism. METHODS: Human renal proximal tubular epithelial cell line HK-2 was treated with high glucose. The mRNA and protein levels of VDUP-1 in HK-2 cells were detected by real-time PCR and Western blot. HK-2 cells were transfected with VDUP-1 small interfering RNA (siRNA). Real-time PCR and Western blot were used to detect the inhibitory effect. The HK-2 cells were treated with high glucose, and the change of VDUP-1 expression was detected. The apoptosis was analyzed by flow cytometry. The activities of caspase-3 and caspase-9 in the cells were measured. The tumor necrosis factor-α (TNF-α) content in the culture supernatant was examined by ELISA. The key proteins of Sonic hedgehog (Shh) signaling pathway, Patched 1 (Ptch1), Smoothened (Smo), zinc finger protein Gli2 and Shh, were determined by Western blot. The HK-2 cells were treated with exogenous Shh, and the levels of Ptch1, Smo and Gli2 were detected by Western blot. After the HK-2 cells with VDUP-1 silencing were treated with exogenous Shh and high glucose, the apoptosis was analyzed by flow cytometry, the activities of caspase-3 and caspase-9 in the cells were examined, and the TNF-α content in culture supernatant was measured by ELISA. RESULTS: High levels of VDUP-1 mRNA and protein were observed in the HK-2 cells treated with high glucose. The mRNA and protein levels of VDUP-1 were decreased in the HK-2 cells transfected with VDUP-1 siRNA(P<0.05). Compared with the normally cultured cells, the apoptotic rate of HK-2 cells was increased after high glucose treatment, and the activities of caspase-3 and caspase-9 and the content of TNF-α were also significantly increased (P<0.05). After down-regulation of VDUP-1 expression by siRNA transfection, the apoptotic rate of HK-2 cells decreased after high glucose treatment, and the activities of caspase-3 and caspase-9, and the content of TNF-α were also significantly decreased (P<0.05). The protein levels of Ptch1, Smo, Gli2 and Shh were decreased after high glucose culture, while down-regulation of VDUP-1 partly antagonized the effect of high glucose on the expression of Ptch1, Smo, Gli2 and Shh in the HK-2 cells. Exogenous Shh promoted the expression of Ptch1, Smo and Gli2, and inhibited the apoptosis of the HK-2 cells induced by high glucose. Exogenous Shh and down-regulation of VDUP-1 synergistically inhibited high glucose-induced apoptosis of the HK-2 cells. CONCLUSION: Down-regulation of VDUP-1 expression inhibits high glucose-induced apoptosis and release of TNF-α in renal tubular epithelial cells by activating Shh signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号