首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelial–mesenchymal transition (EMT) of cancer cells is a crucial process in cancer cell metastasis. An Aquimarina sp. MC085 extract was found to inhibit A549 human lung cancer cell invasion, and caprolactin C (1), a new natural product, α-amino-ε-caprolactam linked to 3-methyl butanoic acid, was purified through bioactivity-guided isolation of the extract. Furthermore, its enantiomeric compound, ent-caprolactin C (2), was synthesized. Both 1 and 2 inhibited the invasion and γ-irradiation-induced migration of A549 cells. In transforming growth factor-β (TGF-β)-treated A549 cells, 2 inhibited the phosphorylation of Smad2/3 and suppressed the EMT cell marker proteins (N-cadherin, β-catenin, and vimentin), as well as the related messenger ribonucleic acid expression (N-cadherin, matrix metalloproteinase-9, Snail, and vimentin), while compound 1 did not suppress Smad2/3 phosphorylation and the expression of EMT cell markers. Therefore, compound 2 could be a potential candidate for antimetastatic agent development, because it suppresses TGF-β-induced EMT.  相似文献   

2.
Chronic exposure to ultraviolet (UV) light promotes the breakdown of collagen in the skin and disrupts the extracellular matrix (ECM) structure, leading to skin wrinkling. Pacific whiting (Merluccius productus) is a fish abundant on the Pacific coast. In the current study, we investigated the anti-wrinkle effect of hydrolysate from Pacific whiting skin gelatin (PWG) in UVB-irradiated human dermal fibroblasts and the molecular mechanisms involved. PWG effectively restored type 1 procollagen synthesis reduced by UVB-irradiation. Also, we found that PWG inhibited collagen degradation by inhibiting MMP1 expression. Furthermore, PWG decreased cytokines TNF-α, IL-6, and IL-1β associated with inflammatory responses and increased antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH content, a defense system against oxidative stress. In terms of molecular mechanisms, PWG increased collagen synthesis through activating the transforming growth factor β (TGF-β)/Smad pathway and decreased collagen degradation through inhibiting the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) pathway. It also suppressed the inflammatory response through suppressing the nuclear factor-κB (NF-κB) pathway and increased antioxidant enzyme activity through activating the nuclear factor erythroid 2/heme oxygenase 1 (Nrf-2/HO-1) pathway. These multi-target mechanisms suggest that PWG may serve as an effective anti-photoaging material.  相似文献   

3.
4.
The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1) was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4) was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors.  相似文献   

5.

Background

Heat shock proteins (HSP) are highly conserved molecules with many immunological functions. They are highly immunogenic with important role in cancer immunotherapy and in vaccine development against infectious diseases. As adjuvant, HSP can augment the immunogenicity of weak antigens and can stimulate antigen presenting cells. Although vaccines have been successful for many infectious diseases, progress in leishmaniasis has not been achieved. In this report, the protective effect of HSP-enriched soluble leishmania antigen (SLA) was determined.

Methods

BALB/c mice were immunized 3× with HSP-enriched SLA and SLA alone and 10 days after final boost. They were infected with 106 stationary phase promastigote of Leishmania major and immunological responses were followed until nine weeks.

Results

No significant differences were observed in lymphocyte proliferation, footpad swelling, parasite burden, nitric oxide or IL-12 cytokine between HSP-enriched or SLA groups. Although the levels of IFN-γ, IL-4, TGF-β, IgG1 and IgG2b were increased in both groups, IFN-γ was significantly higher in SLA group and IgG2a in HSP-enriched SLA.

Conclusion

These results indicate that HSP direct the immune system towards Th2 pattern and does not have protective role in L. major infection. Key Words: Leishmaniasis, Heat shock proteins (HSP), Adjuvant  相似文献   

6.
A new epoxy-cadinane sesquiterpene, 4β,5β-epoxycadinan-1β-ol (1), and six known cadinane sesquiterpenes: cadinan-1,4,5-triol (2), 4α,5β-dihydroxycubenol (3), cubenol (4), cadinan-3-ene-1,5-diol (5), cubenol-3-one (6), and torreyol (7), were isolated from a sample of marine brown alga Dictyopteris divaricata collected off the coast of Yantai (China). Their structures were established by detailed MS and NMR spectroscopic analysis, as well as comparison with literature data.  相似文献   

7.
Accumulating evidence has revealed that fucoidan exhibits anti-tumor activities by arresting cell cycle and inducing apoptosis in many types of cancer cells including hepatocellular carcinoma (HCC). Exploring its effect on microRNA expression, we found that fucoidan markedly upregulated miR-29b of human HCC cells. The induction of miR-29b was accompanied with suppression of its downstream target DNMT3B in a dose-dependent manner. The reduction of luciferase activity of DNMT3B 3′-UTR reporter by fucoidan was as markedly as that by miR-29b mimic, indicating that fucoidan induced miR-29b to suppress DNMT3B. Accordingly, the mRNA and protein levels of MTSS1 (metastasis suppressor 1), a target silenced by DNMT3B, were increased after fucoidan treatment. Furthermore, fucoidan also down-regulated TGF-β receptor and Smad signaling of HCC cells. All these effects leaded to the inhibition of EMT (increased E-cadherin and decreased N-cadherin) and prevention of extracellular matrix degradation (increased TIMP-1 and decreased MMP2, 9), by which the invasion activity of HCC cells was diminished. Our results demonstrate the profound effect of fucoidan not only on the regulation of miR-29b-DNMT3B-MTSS1 axis but also on the inhibition of TGF-β signaling in HCC cells, suggesting the potential of using fucoidan as integrative therapeutics against invasion and metastasis of HCC.  相似文献   

8.
Background: Integrins are heterodimeric glycoprotein receptors that regulate the interaction of cells with extracellular matrix and may have a critical role in implantation. The aim of this study was to investigate the effect of ovulation induction on the expression of α4, αv, β1, and β3 integrins in mouse blastocyst at the time of implantation. Methods: The ovarian stimulated and non-stimulated pregnant mice were sacrificed on the morning of 5th day of pregnancy. The blastocysts were collected, and the expression of αv, α4, β1, and β3 integrins was examined using real-time RT-PCR and immunocytochemical techniques, then their ovarian hormones were analyzed at the same time. The implantation sites in uterine horns of other pregnant mice in both groups were determined under a stereomicroscope on the 7th day of pregnancy. Results: The results showed that the expression of αv, β1, and β3 integrins in both mRNA and protein levels was significantly lower in the ovarian stimulated group than the control group, and the maximum ratio of expression was belonged to β1 molecule (P>0.05). Conclusion: The implantation rate in superovulated mice was significantly lower than control mice. It was suggested that ovulation induction decreased the expression of αv, β1, and β3 integrins of mouse blastocysts. Key Words: Blastosyst, Integrins, Implantation  相似文献   

9.
In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes.  相似文献   

10.
A polyoxygenated and halogenated labdane, spongianol (1); a polyoxygenated steroid, 3β,5α,9α-trihydroxy-24S-ethylcholest-7-en-6-one (2); a rare seven-membered lactone B ring, (22E,24S)-ergosta-7,22-dien-3β,5α-diol-6,5-olide (3); and an α,β-unsaturated fatty acid, (Z)-3-methyl-9-oxodec-2-enoic acid (4) as well as five known compounds, 10-hydroxykahukuene B (5), pacifenol (6), dysidamide (7), 7,7,7-trichloro-3-hydroxy-2,2,6-trimethyl-4-(4,4,4-trichloro-3-methyl-1-oxobu-tylamino)-heptanoic acid methyl ester (8), and the primary metabolite 2’-deoxynucleoside thymidine (9), have been isolated from the Red Sea sponge Spongia sp. The stereoisomer of 3 was discovered in Ganoderma resinaceum, and metabolites 5 and 6, isolated previously from red algae, were characterized unprecedentedly in the sponge. Compounds 7 and 8 have not been found before in the genus Spongia. Compounds 1–9 were also assayed for cytotoxicity as well as antibacterial and anti-inflammatory activities.  相似文献   

11.
The neuritogenic and neuroprotective activities of six starfish polar steroids, asterosaponin Р1, (25S)-5α-cholestane-3β,4β,6α,7α,8,15α,16β,26-octaol, and (25S)-5α-cholestane-3β,6α,7α,8,15α,16β,26-heptaol (1–3) from the starfish Patiria pectinifera and distolasterosides D1–D3 (4–6) from the starfish Distolasterias nipon were analyzed using the mouse neuroblastoma (NB) C-1300 cell line and an organotypic rat hippocampal slice culture (OHSC). All of these compounds enhanced neurite outgrowth in NB cells. Dose-dependent responses to compounds 1–3 were observed within the concentration range of 10–100 nM, and dose-dependent responses to glycosides 4–6 were observed at concentrations of 1–50 nM. All the tested substances exhibited notable synergistic effects with trace amounts of nerve growth factor (NGF, 1 ng/mL) or brain-derived neurotrophic factor (BDNF, 0.1 ng/mL). Using NB cells and OHSCs, it was shown for the first time that starfish steroids 1–6 act as neuroprotectors against oxygen-glucose deprivation (OGD) by increasing the number of surviving cells. Altogether, these results suggest that neurotrophin-like neuritogenic and neuroprotective activities are most likely common properties of starfish polyhydroxysteroids and the related glycosides, although the magnitude of the effect depended on the particular compound structure.  相似文献   

12.
Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3β2 and α6/α3β2β3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.  相似文献   

13.
A new bioactive sterol glycoside, 3β-O-(3,4-di-O-acetyl-β-d-arabinopyranosyl) -25ξ-cholestane-3β,5α,6β,26-tetrol-26-acetate) (carijoside A, 1), was isolated from an octocoral identified as Carijoa sp. The structure of glycoside 1 was established by spectroscopic methods and by comparison with spectral data for the other known glycosides. Carijoside A (1) displayed significant inhibitory effects on superoxide anion generation and elastase release by human neutrophils and this compound exhibited moderate cytotoxicity toward DLD-1, P388D1, HL-60, and CCRF-CEM tumor cells.  相似文献   

14.
One new α-pyrone (nocapyrone R (1)), and three known γ-pyrones (nocapyrones B, H and L (2–4)) were isolated from the culture extract of a Nocardiopsis strain collected from marine sediment. Structures of these compounds were determined on the basis of spectroscopic data including NMR and MS. γ-Pyrones 2–4 were found to induce adiponectin production in murine ST-13 preadipocyte cells but the α-pyrone 1 had no activity. The absolute configuration of the anteiso-methyl branching in 4 was determined by HPLC comparison of a degraded product of 4 with standard samples as a 2:3 enantiomeric mixture of (R)- and (S)-isomers.  相似文献   

15.
Two new 9,11-secosteroids, 22α-acetoxy-24-methylene-3β,6α,11-trihydroxy-9,11-seco-cholest-7-en-9-one (1) and 11-acetoxy-24-methylene-1β,3β,6α-trihydroxy-9,11-seco-cholest-7-en-9-one (2), as well as two known norcembranoids, 5-epi-sinuleptolide (3) and sinuleptolide (4), were isolated from the soft coral Sinularia nanolobata. The structures of these metabolites were elucidated on the basis of extensive spectroscopic analysis. The anti-HCMV (human cytomegalovirus) activity of 1–4 and its cytotoxicity against selected cell lines were evaluated.  相似文献   

16.
Background:One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods:Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results:The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. ALP activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion:The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation. Key Words: Alkaline phosphatase, β-tricalcium phosphate, Poly(lactic-co-glycolic) acid copolymer  相似文献   

17.
18.
A new compound, exophilone (1), together with nine known compounds (2–10), were isolated from a deep-sea-derived fungus, Exophiala oligosperma. Their chemical structures, including the absolute configuration of 1, were elucidated using nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectroscopy (HRESIMS), and electronic circular dichroism (ECD) calculation. Compounds were preliminarily screened for their ability to inhibit collagen accumulation. Compounds 1, 4, and 7 showed weaker inhibition of TGF-β1-induced total collagen accumulation in compared with pirfenidone (73.14% inhibition rate). However, pirfenidone exhibited cytotoxicity (77.57% survival rate), while compounds 1, 4, and 7 showed low cytotoxicity against the HFL1 cell line. Particularly, exophilone (1) showed moderate collagen deposition inhibition effect (60.44% inhibition rate) and low toxicity in HFL1 cells (98.14% survival rate) at a concentration of 10 μM. A molecular docking study suggests that exophilone (1) binds to both TGF-β1 and its receptor through hydrogen bonding interactions. Thus, exophilone (1) was identified as a promising anti-pulmonary fibrosis agent. It has the potential to be developed as a drug candidate for pulmonary fibrosis.  相似文献   

19.
Three new polyhydroxylated sterol derivatives topsensterols A–C (1–3) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A–C (l–3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ9(11) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM.  相似文献   

20.
Background:There is limited information on the 3D prediction and modeling of the colistin resistance-associated proteins PmrA/B TCS in Acinetobacter baumannii. We aimed to evaluate the stereochemical structure and domain characterization of PmrA/B in an A. baumannii isolate resistant to high-level colistin, using bioinformatics tools. Methods:The species of the isolate and its susceptibility to colistin were confirmed by PCR-sequencing and MIC assay, respectively. For 3D prediction of the PmrA/B, we used 16 template models with the highest quality (e-value <1 × 10−50). Results:Prediction of the PmrA structure revealed a monomeric non-redundant protein consisting of 28 α-helices and 22 β-sheets. The PmrA DNA-binding motif displayed three antiparallel α-helices, followed by three β-sheets, and was bond to the major groove of DNA by intermolecular van der Waals bonds through amino acids Lys, Asp, His, and Arg, respectively. Superimposition of the deduced PmrA 3D structure with the closely related PmrA protein model (GenBank no. WP_071210493.1) revealed no distortion in conformation, due to Glu→Lys substitution at position 218. Similarly, the PmrB protein structure displayed 24 α-helices and 13 β-sheets. In our case, His251 acted as a phosphate receptor in the HisKA domain. The amino acid substitutions were mainly observed at the putative N-terminus region of the protein. Furthermore, two substitutions (Lys21→Ser and Ser28→Arg) in the transmembrane domain were detected. Conclusion: TheDNA-binding motif of PmrA is highly conserved, though the N-terminal fragment of PmrB showed a high rate of base substitutions. This research provides valuable insights into the mechanism of colistin resistance in A. baumannii. Key Words: Acinetobacter baumannii, Amino acid substitution, Colistin, Mutation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号