首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Heavy metal distribution and balances of typical forest soils out of German and Danish till The total contents of Cd, Cu, Fe, Mn, Pb and Zn were determined in different horizons as well as in clay coatings, mottles and concretions from 4 Orthic and Gleyic Luvisols around the Baltic Sea. Profile balances resulted in very small losses of Fe, small losses of Cu, Pb and Zn but higher losses of Cd and Mn. All elements were translocated by clay migration but corresponding enrichments in the B-horizons were covered by translocations in soluble form. Only Fe and Mn had been enriched in mottles of the water logged soils.  相似文献   

2.
Pedogenetic differentiation of soil properties in aggregates Besides the pedogenetic differentiation of soils in horizons a differentiation within horizons across aggregates seems possible. The objective of this study is to check if there is a differentiation of soil properties across aggregates. From a Braunerde, a Podzol-Braunerde, and 2 Podsols from Bavaria and Slovakia aggregates of 10–30 mm in diameter were selected manually from both topsoil and subsoil horizons and mechanically fractionated into a core and a surface fraction. In the aggregate fractions Corg, Alo, and Fed were determined. Corg is generally depleted in the surface fractions of the A-horizons compared to the core fractions. This may be due to favoured microbial degradation of organic matter compared to the aggregate core and preferential leaching of organic C. In the subsoil horizons of the Braunerde Corg is lower in the aggregate surface fraction, in the Podzol, however, it is higher. In Podzols preferential C-input and sorption to aggregate surfaces seems to dominate. Lower Alo? and Fed?concentrations in the aggregate surface fractions of all A-horizons may be explained by preferential acidification of aggregate surfaces as the aggregate surfaces mainly buffer the proton input into structured mineral soils. In the B-horizons only in Braunerde Alo and Fed are lower in the aggregate surface fractions than in the core fractions. The Podzol B-horizons show preferential illuvial enrichment of sesquioxides at aggregate surfaces. Thus, pedogenesis results in the differentiation of soil properties not only between horizons but also within horizons on the level of aggregates. The resulting different chemical properties of aggregate surface and core fractions may affect the sorption capacity of structured soils.  相似文献   

3.
One of the significant features of loess-derived soils in Kansas is the occurrence of clay-rich subsurface horizons above a layer enriched with pedogenic carbonates. In order to examine the extent of clay increase and pedogenic carbonate enrichment in a precipitation gradient, ten soil profiles from three different precipitation regions were studied using micromorphological and mineralogical techniques. The precipitation gradient was divided into three groups: 400–550 mm, 550–750 mm, and 750–1100 mm regions. The objectives were to (1) understand the cause of clay orientation in clay-rich horizons (2) investigate the reasons for the clay increase, and (3) observe the interaction of clay and pedogenic carbonate accumulation features along a precipitation gradient in Kansas. Although clay films were identified in the field for soils in the 400–550 mm regions, illuvial clay films were not observed in thin section analysis. The clay accumulations mostly occurred as grain coatings. The rest of the clay accumulations observed were very thin, striated, and mostly associated with voids. The argillic horizons had a granostriated b-fabric, which indicates stress orientation of micromass caused by high shrink–swell activity. Thick and continuous illuvial coatings were observed in the buried horizons of paleosols. In the other two regions where precipitation exceeds 550 mm, illuvial clay coatings with strong orientation were observed along with thin and striated stress-oriented clay. Both types of clay orientations exceeded 1% of the cross-sectional area for the thin section. Although illuvial clay features and pedogenic carbonates were observed in all soils at approximately the same depth, complete obliteration of clay coatings was not observed in these horizons. In-situ weathering of biotite was one of the reasons for the clay increase in all soil profiles. In all soils studied, the clay increase and cause of clay orientation cannot be attributed to a single genetic process or event. Both illuviation and shrink–swell activity were involved in the orientation of clay. Although orientation of clay and pedogenic carbonates were observed in all soils at approximately the same depth, the decomposition of clay coatings was not observed in these horizons.  相似文献   

4.
Genesis and micromorphology of loess-derived soils from central Kansas   总被引:1,自引:0,他引:1  
H. Gunal  M.D. Ransom 《CATENA》2006,65(3):222-236
The genesis and micromorphology of three Harney soils from different precipitation regions (from 540 mm to 715 mm) (fine, smectitic, mesic Typic Argiustolls) in the Smoky Hills of central Kansas were investigated. The objectives were to (1) examine the morphological, chemical, physical and mineralogical characteristics of Harney soils formed in loess; (2) determine the clay mineral distribution with depth and the origin of the clay minerals present; and (3) investigate the relationship between the clay mineralogy and other soil properties such as soil plasmic fabric, COLE values and fine clay/total clay ratios. Mineralogical and micromorphological techniques were used to evaluate the characteristics of the loess-derived soils. The first pedon was formed in 88 cm of Bignell loess over Peoria loess and the other two pedons were formed from Peoria loess. The chemical properties were similar for the pedons studied. Differences were observed in physical properties, especially in particle size distribution, oven-dry bulk density and coefficient of linear extensibility values. Although the soils were mapped in the same soil series, the geomorphic positions of the pedons and the nature of the parent material affected the characteristics of the soils. Smectite was the predominant clay mineral, especially in the fine clay fraction, regardless of the location in the precipitation gradient. The dominance of smectite increased in the C-horizons. This implies a detrital source of smectite in the B-horizons formed in both Bignell and Peoria loess units. The presence of randomly interstratified mica-smectite and the micromorphological observations of weathering biotite indicate that weathering also plays an important role in the mineralogy of Harney soils. The high content of clay mica in the surface horizons was caused by dust fall in the study area. Thick and continuous argillans were observed when FC/TC and COLE values were low and crystalline smectite was present. In the lower part of the soil profiles, the plasmic fabric was mostly ma-skelsepic (granostriated b-fabric) and smectite was more crystalline as indicated by sharper X-ray diffraction peaks.  相似文献   

5.
Four loess-derived soil profiles (southwest of Hannover, Federal Republic of Germany) with increasing influence of impeded water (Hapludalf to Humaquept) have been investigated micromorphologically. The nature of the different micromorphological features, as well as their distribution within the horizons of the profiles are described and quantitatively represented. Observations on the soil fabric in B-horizons show that tubular macropores have been filled either by clay skins, pure silt grains and/or clay-rich silty material. The breakdown of macropores and/or iron/manganese-enrichment may cause the occurrence of involved systems of “generations” of macropores, whose development cannot be reconstructed exactly. Semi-quantitative investigations indicate that numbers of these latter features decrease in going from well-drained soils to wetter soils.  相似文献   

6.
In the northern forest-steppe of European Russia, under the conditions of surface waterlogging (freshwater) and a stagnant-percolative regime, gleyic podzolic chernozem-like soils with thick light-colored eluvial horizons are formed. These horizons are close or similar to the podzolic horizons of bog-podzolic soils in many properties of their solid phase. They are bleached in color and characterized by the removal of Ca, Mg, Fe, Al, and Mn and the relative accumulation of quartz SiO2. These soils differ from leached chernozems in their acid reaction and very low CEC, the presence of Fe-Mn concretions and coatings, and the significant decrease in the clay content in the A2 horizon as compared to the parent rock. The soils studied differ significantly from loamy podzolic and bog-podzolic soils by the composition of the clay minerals in the A2 horizons: (1) no essential loss of smectite minerals from this horizon was found as compared to the rest of the solum, (2) pedogenic chlorites (HIV and HIS) are absent, and (3) the distinct accumulation of illites is observed as compared to the subsoil and parent material, probably, due to the process of illitization.  相似文献   

7.
Towada Ando soils consisted of five soils—Towada-a (1,000 years old), Towada-b (2,000 years old), Chuseri (4,000 years old), Nanbu (8,600 years old), and Ninokura soils (10,000 years Amorphous clay materials of these soils taken at different localities were studied by the combined use of selective dissolution and differential infrared spectroscopy, X-ray analysis, electron microscopy, etc.

The main clay minerals of Towada-a soils, present-day soils, were montmorillonite-vermic-ulite chloritic intergrades and opaline silica, or these minerals and allophane in the humus horizons, and allophane in the non-humus ones. Towada-b soils overlain by the Towada-a soils showed the clay mineralogical constituents similar to those of Towada-a soils. However, allophane was one of the main clay minerals in all the humus horizons as well as non-humus ones. The main clay minerals of Chuseri soils were allophane and layer silicates consisting chiefly of chloritic intergrades and chlorite in the humus horizons, and allophane in the non-humus ones. Opaline silica was present in minor amounts in the humus horizons of Chuseri soils, but nearly absent in Nanbu and Ninokura soils.

There were remarkable differences in the clay mineralogical composition of Nanbu and Ninokura soils with differences of their environmental conditions. Allophane and imogolite Were dominant in the clay fractions of both humus and non-humus horizons of very shallowly buried Nanbu soil which was subjected to the strong leaching process. Allophane was the main clay mineral of deeply buried Nanbu and Ninokura soils which showed the absence of notable accumulation of bases and silica. On the contrary, halloysite with a small amount of siliceous amorphous material appeared in very deeply buried Nanbu and Ninokura soils where bases and silica were distinctly accumulated. The amounts of halloysite in the clay fractions were larger in the humus horizons than non-humus ones, and in Ninokura soil than Nanbu soil.

Soil age, soil organic matter, and depositional overburden of tephras were observed to be conspicuous among various factors relating to the weathering of amorphous clay materials in Towada Ando soils.  相似文献   

8.
The denitrification potential of the soil horizons between 0- and 90-cm depth of 20 agricultural fields, representative of the most frequent combinations of agricultural crops and soil textures in Flanders (Belgium), and the factors affecting the denitrification potential were studied in the laboratory under controlled conditions. The denitrification potential in the presence of an added soluble C and N source was measured at 15°C after saturation of air-dried soil samples with water. The denitrification potential of the lower horizons was generally negligible compared to the upper horizons. The lower denitrification potential of the deeper horizons could partially be explained by their limited C availability. The denitrification potential of the upper horizons strongly depended on texture. Based on this parameter the soils could be divided into three groups: soils with a high clay content (>30% clay) were characterised by a high denitrification potential (>8.33 µg N g-1 dry soil day-1); soils with medium texture had a medium denitrification potential, between 0.41 and 7.25 µg N g-1 dry soil day-1; and soils with a high sand content (>80% sand) had a low denitrification potential (<2.58 µg N g-1 dry soil day-1). In most cases, extending the saturation period during pre-incubation increased the denitrification potential. Comparison of the denitrification potential of the upper horizons with and without addition of a soluble C source showed that the denitrification potential of the upper horizons of these soils was limited by their percentage of endogenous C. The measured denitrification potentials indicate that denitrification losses in soils high in clay content can be important when NO3 - concentrations are high.  相似文献   

9.
Understanding soil water dynamics and storage is important to avoid crop failure on highly weathered, porous and leached soils. The aim of the study was to relate soil moisture characteristics to particle-size distributions and chemical properties. On average, Atterberg limits were below 25% in the A-horizon and not more than26.56% in the B-horizon, whereas soil bulk density was between 1.27 and 1.66Mgm?3. The saturated hydraulic conductivity (Ksat) was generally between 0.20 and 5.43 cm h?1 in the top soil and <1.31 cm h?1 in the subsoil. The higher Ksat values for the A-horizons were attributed to the influence soil microorganisms operating more in that horizon. The amount of water retained at field capacity or at permanent wilting point was greater in the B-horizons than in the A-horizons, suggesting that clay accumulation in the B-horizon and evapotranspiration effects in the A-horizon may have influenced water retention in the soils. Soil moisture parameters were positively related to clay content, silt content, exchangeable Mg2+, Fe2O3 and Al2O3, and negatively related to sand content, SiO2, sodium absorption ratio, exchangeable sodium percentage and bulk density. The low clay content may explain why drainage was so rapid in the soils.  相似文献   

10.
Sand-, silt-, and clay-size organo-mineral fractions were isolated in bulk from surface horizons of five soils following ultrasonic dispersion in water. Good clay separation was achieved for all except one highly organic, calcareous clay soil. Organic-N and -C were concentrated in the clay and silt fractions but for each soil the organic C : N ratio decreased in the order sand > silt > whole soil > clay. Acid hydrolysis of the silt and clay fractions revealed a slight concentration of amino acid-N and NH4-N in the clays but only small differences in the distribution of individual amino acids were observed. The results suggest that both silt and clay fractions may be important in the stabilization of soil organic matter.  相似文献   

11.
Placic (Bsm) and spodic (Bhs) horizons are common in subalpine or alpine forest soils in Taiwan. Bsm horizons are found more usually in finer textured soils than those with Bhs horizons. To understand the different formation processes in Bsm and Bhs horizons in a humid subtropical ecosystem, we identified micro‐morphological features by using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and electron probe micro‐analysis (EPMA), and determined the physiochemical properties by chemical extractions and clay mineralogy. The study included four pedons with well‐developed Bsm horizons from our previous study and four with well‐developed Bhs horizons at other sites. Both sites were in subtropical mountain forests with similar climate, topography and general geology but over regoliths with distinctly different textures. Micro‐morphology revealed a vughy (small cavities lined with in‐washed materials) microstructure in Bsm horizons but a granular structure with bridge microstructures between coarse grains in Bhs horizons. Chemical analysis revealed more free pedogenic iron (Fed) and aluminium (Ald) in Bsm than in Bhs horizons, but more organically complexed Al (Alp) in Bhs horizons. Energy dispersive spectrometry revealed predominant Fe, oxygen (O) and carbon (C) in the matrix of the Bsm horizons, whereas Al, silicon (Si) and C were the major elements of interstitial materials in Bhs horizons. Polarizing microscopy and EPMA spectra confirmed the illuvial nature of organic Al complexes in Bhs horizons. The transformation of clay minerals showed more intense podzolization in Bhs horizons than in Bsm horizons. The different formation mechanisms in Bsm and Bhs horizons result from contrasting texture; redox processes are predominant in Bsm horizons because of the clayey texture whereas podzolization is predominant in sandy Bhs horizons.  相似文献   

12.
Soil water at an acid-sensitive forested catchment in southwestern Poland has been studied for four years. Median base saturation (BS) is only 5% in the podzol B-horizons. Very low pH values in the soil water from the O-horizons (10- and 90 percentiles pH 3.5 and 4.3) increased to a typical median pH in the B-horizons of 4.4, mainly by release of inorganic labile aluminium (Ali). Median concentrations in the B horizons were 3.4mg Ali L?1. Al-soil/soilwater interactions were studied over a large span of sulphate concentrations resulting from both a generally decreasing S-deposition during the last decades and an increase in precipitation during the study period. These changes led sulphate to leach from the mineral soil. Aluminium mobilisation is better described by jurbanite- than by gibbsite solubility. For the soils with aluminium saturation (AlS) >90%, there is a tendency that the concentration of Al3+ decreases less than divalent base cations with a decrease in SO4 2? concentration. This causes the critical load molar ratio (RCL={Al3+}/{Ca2++Mg2+}) to increase with a decrease in the sulphate concentration in soil water, which is not in agreement with a simple cation-exchange model.  相似文献   

13.
Purpose

Several interactions between Al and the solid phase of soil influence Al buffering in soil solution. This work evaluated soils cultivated with Pinus taeda L. to determine Al forms in organic and mineral horizons using various extraction methods and to relate acidity with clay mineralogy.

Materials and methods

Organic and mineral horizons of 10 soil profiles (up to 2.1 m deep) in southern Brazil were sampled. Organic horizons were separated into fresh, aged, and fermented/humified litter. The following Al extraction methods were utilized: 0.5 mol L?1 pH 2.8 CuCl2–Al complexed in organic matter; 1.0 mol L?1 KCl–exchangeable Al; water–Al soluble in soil solution; HF concentrated?+?HNO3 concentrated?+?H2O2 30% (v/v)–total Al. Six sequential extractions were carried out to isolate different forms of amorphous minerals that can buffer Al on soil solution: 0.05 and 0.1 mol L?1 sodium pyrophosphate; 0.1 and 0.2 mol L?1 ammonium oxalate; 0.25 and 0.5 mol L?1 NaOH. Samples of clay were also analyzed by XRD.

Results and discussion

There was a clear effect of litter age on increasing total Al concentration. In the aged litter and fermented and/or humified litter, levels of total Al were 1.4 to 3.8 and 1.5 to 7.8 times greater than in fresh litter, respectively. The CuCl2 method had higher Al extraction capacity than the KCl method for litter. The lowest Al–pyrophosphate values were observed in the Oxisol, which also had a predominance of gibbsite and the lowest levels of Al–KCl and Al–CuCl2. There was an inverse relationship between degree of soil weathering and soluble and exchangeable Al in soils. Available Al increased with higher Si proportion in minerals of the clay fraction (2:1?>?1:1?>?0:1).

Conclusions

The worst scenario was soils with the combination of high soluble and exchangeable Al levels and high concentrations of amorphous forms of Al minerals. The best predictors of Al accumulation in the youngest litter horizon were extractions of amorphous minerals with pyrophosphate and NaOH. These extractors are normally used to predict the level of Al buffering in soils. Organic matter had less influence on Al dynamics in soils.

  相似文献   

14.
The concentrations of rare-earth elements were studied in the profiles of soddy podburs and mucky-humus gley soils. The soil horizons differed significantly in the contents of Corg (0?C26%), the physical clay (<0.01 mm) fraction (3?C31%), the acidity (pH 4 to 5.5), and the presence/absence of Al-Fe-humus accumulations. The most significant relationship was observed between the concentrations of rare-earth elements and the physical clay content, particularly for Nd: x(Nd, mg/kg) = 7 + 1.6y (fraction <0.01 mm, %). Weak biogenic accumulations in the upper horizons were observed for Nd, Ce, and Dy; Nd, Pr, and La accumulated in the Al-Fe-humus illuvial horizon. The concentrations of rare-earth elements in the studied soils formed the following sequence (mg/kg): Nd (20?C101)-Ce (10?C44)-La, Sm, Gd, Dy, Yb (3?C20)-Pr (1?C4)-Ho (0.1?C0.4)-Tm, Lu, and Tl (0.0). A clear trend was observed to higher contents of even-numbered elements as compared with odd-numbered elements, excluding La.  相似文献   

15.
C.W. Childs  R.L. Parfitt  R. Lee 《Geoderma》1983,29(2):139-155
Chemical and mineralogical data are presented for three Spodosols (podzols) and a related Inceptisol (yellow-brown loam). Allophane with an Al/Si atomic ratio close to two is identified in the B horizons of all four soils, and minor amounts of imogolite are present in association with allophane in all but one soil where small-particle gibbsite occurs. Parent materials for these soils are essentially non-vitric. Allophane (Al/Si = 2) has been estimated quantitatively in all soils using oxalate-extractable Si (Si0) and is selected clay fractions using both Si0 and infrared spectroscopy. Maximum concentrations of allophane (Al/Si = 2) range from 5% to 18% of fine earth (< 2 mm) fractions and all occur in B horizons. Fe0 values are low relative to Al0 values except for the upper horizons of the Inceptisol. Al0 values peak in B horizons and the ratio pyrophosphate-extractable Al to Al0 decreases from about 1 in A and upper B horizons to 0.1–0.4 in lower B horizons.An interpretation of the data is consistent with recent proposals that the movement of Al in podzolisation is due primarily to the formation of inorganic complexes with Si. Chemical criteria for spodic horizons should be consistent with the total illuviation of Al and Fe (and perhaps Si), rather than just the organic-bound fraction of Al and Fe in these horizons as indicated by amounts in extractants such as pyrophosphate.  相似文献   

16.
The presence of magnesium-bearing calcites is indicated in soil carbonate accumulation layers and concretions. A differential solubility method permitted estimation of the mol percent magnesium-carbonate content of calcites in the presence of dolomite. The relationship between diffraction spacings and mol percent MgCO3, of selected samples is in good agreement with that depicted by other workers for biogenic magnesium-bearing calcites.Magnesium-containing calcites are concentrated in clay (< 2 μ) and fine silt (2–10 μ) sizes of Cca horizons. Their presence in the clay fraction of Ck horizons is an indication that carbonate mineralogy may change at profile depths often considered to be unaffected by pedogenic processes.The dissolution of existing carbonates within solum horizons, the translocation of ions in solution and the reprecipitation of calcite in Cca and underlying horizons are the main processes applicable to a variety of different natural situations. The Mg level of the secondary calcites is likely regulated by the partitioning effect during their precipitation. Periodic moisture movement to greater depths and lateral movement of soil solutions serve as a regulating factor in maintaining soluble Mg at levels favorable to the precipitation of low-magnesium calcites in upland chernozemic soils of central Saskatchewan; higher magnesium contents occur in calcites occurring in subsoils underlying solonetzic and depressional chernozemic soils of the same area. Formation of magnesium-bearing calcites within concretions in soils of the Rusizi basin in Africa were likely influenced by Mg-rich ground waters; associated dolomite may also have been of a secondary nature.  相似文献   

17.
A database for the main genetic horizons of loamy automorphic soddy-podzolic, typical podzolic, gley-podzolic, and surface-gley tundra soils of the Komi Republic was developed on the basis of the available archive and literature data and unpublished results of the authors. The database included the following parameters: the pHwater and pHKCl, the exchangeable and total acidity, and the degree of SEC saturation. All the parameters were characterized by normal distribution types. The variation coefficients V for the pHwater and pHKCl were <10%. For the exchangeable and total acidities and the degree of SEC saturation, the V values varied among the soils and horizons in the range of 10–50%. The greatest differences in the acid-base properties of all the soils were revealed between the groups of organic horizons, the eluvial horizons, and the B horizon by the cluster analysis. Between the separate subtypes of podzolic soils, the maximum differences were observed in the organic and, to a lesser extent, eluvial horizons; the B horizons of the different soils in the taiga and tundra zones did not significantly differ in these terms. For the entire profiles, the highest similarity was found between the typical podzolic and gley-podzolic soils, which were more similar to the automorphic soils of the tundra zone than to soddy-podzolic soils.  相似文献   

18.
Saturated hydraulic conductivity (Ks) is one of the soil properties used most often to predict soil behavior and suitability for a variety of uses. Because of the difficulty in Ks measurement and its variability with depth and across the landscape, Ks is commonly predicted from other more easily evaluated properties including texture, clay mineralogy, bulk density, pedogenic structure and cementation. Of these, texture and pedogenic structure are most commonly used to estimate Ks, but the reliability of these estimates has not been evaluated for common soils in the Southern Piedmont of Georgia. Thus, the objectives of this study were to evaluate Ks for major horizons in soils and landscapes in the Georgia Piedmont and to relate Ks to morphological properties of these horizons. Ten sites across the region were selected, and 21 pedons arranged in three transects were described from auger holes and pits. For each pedon, Ks was measured in upper Bt horizons, at 140 cm below the surface (Bt, BC, or C horizon), and at a depth intermediate between the shallow and deep measurements (Bt, BC, or C horizon) with a constant head permeameter. The Ks of individual horizons ranged from 1 × 10− 8 to 2 × 10− 5 m s− 1. At six of 10 sites evaluated, clayey upper Bt horizons had higher Ks than deeper horizons with less clay. This difference was attributed to weaker structure in the deeper BC horizons. Structural differences did not explain all variation in Ks with depth, however. Other soil and landscape properties including parent material composition, colluvium on lower slope positions, C horizon cementation, and depth of soil development also affected Ks of horizons in these soils and should be used to better estimate Ks.  相似文献   

19.
Pair correlation coefficients (r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity (H exch) and the activity of the [H]+ ions in the KCl extract (a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total (H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.  相似文献   

20.
The Phuket, Thung Wa and Huai Pong soils of this study form the Phuket catena and are extensive in Narathiwat province in the southern part of peninsular Thailand where they were studied in the field and sampled. The Phuket soils on the higher-lying positions and the Huai Pong soils on the nearly-level, lower positions, have developed argillic horizons and are Ultisols. The Thung Wa soils, which occur on intermediate positions and receive sediments from upslope, have cambic horizons and are classified as Inceptisols.All soils formed from Late Cretaceous or Early Tertiary granite or from sediments derived frome these granites under a tropical rain forest climate. They contain kaolinite as the predominant clay mineral and are highly leached, with base saturation of less than 35% in their B horizons. Cation exchange capacities are less than 6 mequiv. per 100 g soil and exchange acidity and exchangeable aluminium are high. Field and thin-section studies as well as particle-size analysis indicate considerable clay translocation from A to B horizons in the Phuket and Huai Pong soils and little clay movement in the Thung Wa soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号