首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Li    X. Chen    Z. Y. Xin    Y. Z. Ma    H. J. Xu    X. Y. Chen  X. Jia 《Plant Breeding》2005,124(2):203-205
Three lines conferring resistance to powdery mildew, Pm97033, Pm97034 and Pm97035, were developed from the cross of Triticum durum-Haynaldia villosa amphidiploid TH3 and wheat cv.'Wan7107' via backcrosses, immature embryo and anther culture. Genomic in situ hybridization analysis showed that these lines were disomic translocation lines. Cytogenetic analysis indicated that the F1 plants of crosses between the three translocation lines and 'Wan7107' and crosses between the three translocation lines and substitution line 6V(6D) formed 21 bivalents at meiotic metaphase I. Aneuploid analysis with 'Chinese Spring' double ditelocentric stocks indicated that the translocated chromosomes were related to chromosome 6D. Biochemical and restriction fragment-length polymorphism (RFLP) analyses showed that the translocation lines lacked a specific band of 6VL of H. villosa compared with the substitution and addition lines but possessed specific markers on the short arm of the 6V chromosome of H. villosa. The three translocation lines lacked specific biochemical loci and RFLP markers located on chromosome 6DS. The results confirmed that Pm97033, Pm97034 and Pm97035 were T6DL.6VS translocation lines.  相似文献   

2.
Chromosomal location of aluminium tolerance genes in rye   总被引:4,自引:0,他引:4  
A. Aniol 《Plant Breeding》2004,123(2):132-136
Rye is known for its high tolerance of aluminium in the soils in comparison with wheat and other cereals. To localize the major gene/ genes controlling aluminium tolerance on the rye chromosomes, four series of wheat‐rye addition lines, two sets of triticale D(R) substitution lines and several wheat/rye translocation lines were tested in experiments on seedlings grown in nutrient solutions with various concentrations of aluminium. The results indicate that the major locus responsible for Al tolerance in rye is located on the short arm of chromosome 3R. The importance of these results for controlled introgressions into cereals is discussed.  相似文献   

3.
In order to create cotton translocation lines, 191 translocations were recovered as heterozygotes following combined treatment of seeds by colchicine and γ‐rays, irradiation of seeds by thermal neutrons and c‐irradiation of pollen. Cytogenetic analysis showed that chromosome translocations involving two chromosomes arose more often (180) than those involving three chromosomes (11). The heterozygous translocations were characterized by different formation and frequencies of the multivalents at metaphase I of meiosis. Only 104 translocations were characterized by a multivalent frequency of more than 0.25 per cell. Most of the translocations (156) exhibited a high meiotic index, but 11 were characterized by a decreasing meiotic index and by an increase in the percentage of tetrads with micronuclei. The pollen fertility of translocations differed significantly and varied from high fertility to pollen sterility. The high frequency of abortive pollen grains was typical for about one half of translocations studied. The translocations were made homozygous and as a result, 12 new reciprocal homozygous translocation lines were obtained in cotton.  相似文献   

4.
利用染色体C-分带和基因组原位杂交分析,从普通小麦-簇毛麦4V染色体二体异附加系(DA4V)与普通小麦农林26-离果山羊草3C染色体二体异附加系(DA3C)杂种后代中选育出小麦-簇毛麦纯合易位系T4VS·4VL-4AL。SSR和RFLP标记分析表明,该易位染色体包括4VS、4VL近着丝粒部分区段和4AL顶端区段;该易位系具有良好的细胞学稳定性,结实正常,为杀配子染色体诱发形成的补偿型易位;易位系T4VS·4VL-4AL高抗梭条花叶病,是小麦抗病育种新种质。  相似文献   

5.
抗白粉病基因Pm21来自小麦近缘种簇毛麦。小麦一簇毛麦小片段顶端易位系NAU418(T1AS·1AL-6VS)和小片段中间插入易位系NAU419(T4BS·4BL-6VS-4BL)携带Pm21,高抗白粉病,是小麦抗病育种新种质。为了对其育种利用提供依据,以NAU418和NAU419为亲本分别与来源于不同生态区的郑麦9023等12个小麦品种杂交,杂种F_1再分别与来源于不同生态区的农艺亲本进行正、反回交,研究两种易位染色体在不同小麦背景中的遗传稳定性及其通过雌雄配子的传递规律。DNA分子原位杂交结果表明,在杂种F_1花粉母细胞减数分裂中期Ⅰ(Pollen Mother Cell,PMC MI),两种易位染色体分别可以与对应的小麦染色体配对形成棒状二价体。正、反交结果分析表明,NAU418中的小片段顶端易位染色体T1AS·1AL-6VS通过雌配子和雄配子的传递率分别为8.00%~50.98%和7.89%~45.07%,NAU419中的小片段中间插入易位染色体T4BS·4BL-6VS-4BL通过雌配子和雄配子的传递率分别为29.17%~52.38%和7.69%~47.06%。表明2个易位系中的易位染色体都可以通过雌、雄配子传递,但是其通过雄配子的传递率均显著低于通过雌配子的传递率。  相似文献   

6.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Two disomic barley chromosome addition lines and five translocated chromosome addition lines of common wheat cultivar Shinchunaga were isolated. They were derived from a hybrid plant between Shinchunaga and cultivated barley Nyugoruden (New Golden) by backcrossing with wheat and self pollination. Barley chromosomes added to chromosome arms involved in the translocated chromosomes were identified by C-banding method and by crossing these lines with Chinese Spring/Betzes addition lines. Two disomic addition lines were identified to have chromosome 6 and 7 of barley, respectively. Two of the five translocated chromosome addition lines were clarified to have same chromosome constitution, 42 wheat chromosomes and a pair of translocated chromosomes constituted with a long arm of chromosome 5B of wheat and a short arm of chromosome 7 of barley. The other three lines could not be identified due to chromosome rearrangement. Performances of these seven lines on agronomic characters were examined. Addition of barley chromosome 7 induced early heading, and chromosome 6 showed lated heading. Almost all of the lines except that of chromosome 6 showed short culm length and all showed reduced number of tillers, spikelets and grains per ear, and low seed fertility. These lines would be useful for genetic analyses in wheat and barley and for induction of useful genes of barley into wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
山羊草属植物中的某些染色体,当其单体附加到小麦基因组时,能使带有该染色体的配子正常存活;而使无该染色体的配子发生染色体断裂,产生易位等染色体结构畸变。利用杀配子染色体创制易位系是将小麦近缘种属野生资源的优良性状转移给小麦的一个有效途径。本文介绍了杀配子染色体的类型、作用时期,并重点综述了利用杀配子染色体创制小麦族染色体易位系方面的研究进展。  相似文献   

9.
Detection of H. villosa chromosomes in telosomic addition and translocation lines of common wheat was undertaken using genomic in situ hybridization (GISH), C-banding techniques and polyacrylamide gels electrophoresis. The result of GISH on mitotic metaphase cells of the addition line `95039' indicated that the added telochromosomes originated from H. villosa, and it was probably 6VS or 7Vs of H. villosa according to the C-banding pattern. Furthermore, the analysis of gliadin profiles demonstrated that the telochromosome was 6VS. A pair of 1RS/1BL translocation chromosome was also found in `95039'. In addition, mitotic GISH analysis showed that the 6VS/6AL translocation chromosome remained unchanged after being transferred into new wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
通过小麦与长穗偃麦草远缘杂交创制附加系、代换系及易位系是小麦遗传改良中利用长穗偃麦草优良基因的重要途径。本研究将长穗偃麦草特异分子标记、染色体计数、基因组原位杂交(GISH)及非变性原位杂交(ND-FISH)等多种方法相结合,对硬粒小麦Langdon (AABB)与小偃麦8801 (AABBEE)的杂交后代群体进行分子细胞学鉴定,创制出硬粒小麦-长穗偃麦草3E、6E染色体双体附加系Du-DA3E和Du-DA6E,硬粒小麦-长穗偃麦草1E (1B)染色体双体代换系Du-DS1E(1B)以及硬粒小麦-长穗偃麦草1AS-1EL染色体易位系Du-T1AS·1EL。创制的4个种质中长穗偃麦草染色体均能稳定遗传,这不仅增加了硬粒小麦-长穗偃麦草附加系和代换系的类型,还为后续利用长穂偃麦草优良基因改良小麦提供了特殊种质资源。  相似文献   

11.
抗黄矮病小麦种质的分子标记   总被引:10,自引:0,他引:10  
应用基因组原位杂交技术分析了抗小麦黄矮病种质的遗传组成,研究表明小麦一中间但麦草部分双二倍体无芒中4(2n=56)具有40条小麦染色体、5对中间僵麦草染色体、3对小麦/中间僵麦草易位染色体,其中1对是罗伯逊氏易位染色体。结果表明无芒中4与远中5的遗传组成有明显差异,是两种不同类型的材料。抗黄矮病小麦种质F940418, T10  相似文献   

12.
G. Belay  A. Merker 《Plant Breeding》1998,117(6):537-542
Three tetraploid (2n= 4x= 28) wheat Triticum turgidum L. landrace morphotypes (= genotypes) from Ethiopia were found to carry a variant karyotype directly discernible under the microscope. This was possible because the rearrangement involved one of the satellited chromosomes. Giemsa C-banding revealed that the rearrangement resulted from a 5BS.6BS(5BL.6BL) centric reciprocal translation. The banding pattern on 5BL was polymorphic, suggesting that this translocation might have occurred more than once. There was little C-band polymorphism for the remaining chromosomes, except for 2A. As pure lines, all three morphotypes showed normal chromosome pairing at metaphase I (MI) in pollen mother cells (PMCs). indicating that they are genomically stable. Meiotic analyses of F1 hybrids and F2 segregates derived from crosses with tester varieties clearly indicated that one of them (B-l–9) carried another translocation. However, we were not successful in delecting the chromosomes involved, presumably the interchanged segments did nol include C-banding regions. By using T5BS.6BS, direct evidence for segregation distortion against translocation homozygotes in intervarietal hybrids was obtained. The distorted segregation was attributed lo zygotic selection. No aneuploid plants were obtained from the F2 segregates. However, translocation heterozygotes resulting in unstable meiosis were abundant in the F2 generation. The implications of the results in using the indigenous landraces in hybridization breeding are discussed.  相似文献   

13.
王林生  张雅莉  南广慧 《作物学报》2018,44(10):1442-1447
大赖草对赤霉病具有较好的抗性,将大赖草赤霉病抗性基因转入普通小麦,对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦–大赖草异附加系基础上,采用~(60)Co-γ射线(1200Rad,剂量率100Rad min~(-1))处理小麦–大赖草二体附加系DA7Lr,并用处理后的花粉授给去雄的普通小麦中国春,对其M_1代种子根尖细胞有丝分裂中期染色体进行GISH分析,获得1株具有一条普通小麦–大赖草易位染色体的植株,对其自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期I观察发现,2条易位染色体形成了稳定的环状二价体,表明该植株为纯合体。利用顺序GISH–双色FISH分析,结合C-分带、小麦D组专化探针Oligo-pAs1-2和B组专化探针Oligo-pSc119.2-2,进一步鉴定出该易位系为T5AS-7LrL·7LrS,同时筛选出可追踪该易位系的3个EST-STS分子标记,即BE591127、BQ168298和BE591737。该易位系的育成也为小麦赤霉病遗改良提供了新种质。  相似文献   

14.
We developed some wheat-Th. intermedium translocation lines,Yw642, Yw443 and Yw243, etc., showing good BYDV resistance from L1by induced homoeologous pairing using CS ph mutant. Characterization ofthese wheat lines was carried out by GISH and RFLP analysis. The resultsof GISH showed that the lines, YWw42, Yw443 and Yw243, etc., arehomozygous wheat-Th. intermedium translocation lines, in which thechromosome segments of Th. intermedium were transferred to thedistal end of a pair of wheat chromosomes. RFLP analysis indicated that thetranslocation chromosome of the wheat lines is T7DS · 7DL-7XL. Thebreakpoint of the translocation is located on the distal end of 7DL, betweenXpsr965 and Xpsr680 about 90–99 cm from the centromere. The BYDVgene is located on the distal end of 7XL around Xpsr680, Xpsr687 andXwg380. The RFLP markers of psr680, psr687 and wg380 werecosegregated with the BYDV resistance respectively and could be used formolecular assisted selection (MAS) in wheat breeding program for BYDVresistance.  相似文献   

15.
基于EST-PCR的簇毛麦染色体特异分子标记筛选及应用   总被引:1,自引:0,他引:1  
为定位、转移和利用簇毛麦有益基因, 通过花粉辐射, 获得一批包括小麦-簇毛麦易位染色体的异染色体系。为了鉴定这批材料中的簇毛麦染色体身份, 根据水稻、小麦的EST序列合成了240对STS引物, 其中34对引物在普通小麦中国春与簇毛麦间存在多态性;进一步对亲本及簇毛麦二体异附加系进行PCR扩增分析, 标记CINAU32-300可追踪簇毛麦1V染色体, 标记CINAU33-280、CINAU34-510、CINAU35-1100、CINAU36-380和CINAU37-400可追踪簇毛麦2V染色体, 标记CINAU38-250可追踪簇毛麦3V染色体, 标记CINAU39-950和CINAU40-800可追踪簇毛麦4V染色体, 标记CINAU41-745和CINAU42-1050可追踪簇毛麦5V染色体, 标记CINAU44-765和CINAU45-495可追踪簇毛麦7V染色体。加上本室已开发的2个6V染色体特异标记, 用这些簇毛麦特异分子标记鉴定辐射诱导材料的部分回交后代, 选育出小麦背景中只包含单条簇毛麦染色体的整套1V至7V染色体系, 同时有18条易位染色体的簇毛麦身份得到确定, 表明这些标记可以用来快速检测普通小麦背景中的簇毛麦染色体或染色体片段。  相似文献   

16.
Wheat cultivars carrying the 1BL.1RStranslocation were crossed with newly synthesised octoploid triticale lines involving four rye genotypes having ο-secalin banding patterns different from each other and from that of the 1BL.1RS translocation. Homologous recombination was expected between the short arm of the 1R chromosomes of the rye genotypes and the 1RS arm of the 1BL.1RSwheat/rye translocation. Seven sequence-specific PCR-based markers:Xiag95, RMS13, Bmac0213, GPI, Xpsr960, 5Sand SCM9, and ο-secalinproteins were used to detect recombination events in the BC1F2 generation. Segregation analysis demonstrated that a barley SSR marker (Bmac0213) locus was present on the 1RS chromosome arm. Of 834plants tested in four different BC1F2 populations, 246individuals were found to carry recombined1BL.1RS translocation chromosomes. Genetic linkage analysis was performed on the eight markers in the four different mapping populations. The physical positions of the markers are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Complete chromosomes 1R and 1B were reconstructed in wheat from the centric wheat-rye translocation 1RS.1BL. Three substitutions: 1R(1A), 1R(1B), 1R(1D), and three new centric translocations: 1RS.1AL, 1RS.1BL, 1RS.1DL were produced from the reconstructed chromosome 1R. Each one of these has the same rye chromosome arm 1RS which was present in the original translocation 1RS.1BL of ‘Kavkaz’ wheat. Reconstructed chromosome 1B and a normal chromosome 1R were used to produce a new 1RS.1BL translocation. This translocation has the long arm from the original 1RS.1BL translocation of ‘Kavkaz’, but a different 1RS arm. The third generation centric translocations were mitotically stable and were normally transmitted to progeny. Misdivision frequency of the reconstructed chromosomes 1R did not change relative to normal 1R, whereas the misdivision frequency of the two reconstructed chromosomes 1B tested was significantly higher relative to normal 1B. These experiments demonstrate that repeated cycles of centric breakage and fusion do not impair the function of centromeres in wheat and rye but may change chromosome's susceptibility to misdivision. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
J. Sybenga 《Euphytica》1995,83(1):53-61
Summary Cytological tester sets include series of aneuploids (nullisomics, monosomics, trisomics of different types, tetrasomics), series of rearranged chromosomes (translocations, inversions, duplications, deficiencies) and series of chromosomes recognizable by specific microscopically visible markers (C-or other banding, molecular markers). In rye, only a few (mainly tertiary and telocentric) monosomics and no viable nullisomics have been found. Several sets of primary trisomics and some telocentric sets, usually not fully complete, have been developed, but few are still available for gene localization. A few tertiary trisomics have been derived from translocation heterozygotes. Extensively used are different sets of additions of rye chromosomes to wheat. A relatively widely distributed set of marked chromosomes is the Wageningen translocation tester set, complemented with translocations from different other institutions. A disadvantage of rye translocations is insufficient heterozygote semisterility. Series of otherwise rearranged chromosomes have not been reported. Sets of lines with chromosomes conspicuously differing from the standard C-banding pattern have been obtained. Molecular markers are available for most rye chromosome, but lack of heterozygosity, necessary for classification afterin situ hybridization is a restriction for use as cytological testers. In the cases of most translocations, C-banding andin situ molecular markers, each separate plant in a segregating population must be screened cytologically, whereas with aneuploid markers or with translocations having sufficient heterozygote semisterility, analyzing segregations is sufficient.  相似文献   

19.
J. Sybenga 《Euphytica》1996,89(1):143-151
Summary Cytological tester sets include series of aneuploids (nullisomics, monosomics, trisomics of different types, tetrasomies), series of rearranged chromosomes (translocations, inversions, duplications, deficiencies) and series of chromosomes recognizable by specific microscopically visible markers (C- or other banding, molecular markers). In rye, only a few (mainly tertiary and telocentric) monosomics and no viable nullisomics have been found. Several sets of primary trisomics and some telocentric sets, usually not fully complete, have been developed, but few are still available for gene localization. A few tertiary trisomics have been derived from translocation heterozygotes. Extensively used are different sets of additions of rye chromosomes to wheat. A relatively widely distributed set of marked chromosomes is the Wageningen translocation tester set, complemented with translocations from different other institutions. A disadvantage of rye translocations is insufficient heterozygote semisterility. Series of otherwise rearranged chromosomes have not been reported. Sets of lines with chromosomes conspicuously differing from the standard C-banding pattern have been obtained. Molecular markers are available for most rye chromosome, but lack of heterozygosity, necessary for classification after in situ hybridization is a restriction for use as cytological testers. In the cases of most translocations, C-banding and in situ molecular markers, each separate plant in a segregating population must be screened cytologically, whereas with aneuploid markers or with translocations having sufficient heterozygote semisterility, analyzing segregations is sufficient.  相似文献   

20.
小麦阿拉伯木聚糖含量的QTL分析及其与品质性状的关系   总被引:1,自引:0,他引:1  
阿拉伯木聚糖是小麦中最重要的非淀粉多糖, 对营养和加工品质有重要影响。采用IciMapping软件, 对PH82-2/内乡188重组自交系群体(F2:6)的水溶性和总阿拉伯木聚糖含量进行QTL分析, 在1B、4B、5B、5D和6B染色体上定位5个控制总阿拉伯木聚糖含量的QTL, 分别解释5.6%~18.7%的表型变异; 在1A、1B、5B、6B和7A染色体上定位5个控制水溶性阿拉伯木聚糖含量的QTL, 分别解释4.3%~34.9%的表型变异。其中, 1B、5B和6B染色体上影响水溶性和总阿拉伯木聚糖含量的QTL位于同一标记区间。1BL/1RS易位对水溶性和总阿拉伯木聚糖含量有显著作用, 籽粒硬度对总阿拉伯木聚糖含量有显著作用。阿拉伯木聚糖含量, 特别是总阿拉伯木聚糖含量, 与快速黏度分析仪峰值黏度、稀澥值, 以及面条品质黏弹性、食味呈显著相关, 但相关系数受1BL/1RS易位和籽粒硬度影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号