首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

2.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

3.
A number of higher plants are able to hyperaccumulate cadmium(Cd). However, it is unknown whether cadmium(Cd) plays a biological functional role in the carbonic anhydrase(CA) of hyperaccumulators. A hydroponic experiment was conducted to explore the potentially physiological function of Cd in CA and the accumulation and tolerance of Cd in the Zn/Cd hyperaccumulator Picris divaricata Vant. P. divaricata was exposed to nutrient solutions with six Cd concentrations(0, 5, 10, 25, 50 and 75 μmol L~(-1)). After 12 d, plants were harvested for the analysis of plant biomass, Cd concentration and CA activity. The Cd concentrations in plant increased with the increasing Cd in nutrient solution, reaching 640 and 3 100 mg kg~(-1) in shoot and root, respectively, at the 75 μmol L~(-1) Cd treatment. Meanwhile, plant growth was enhanced by the Cd treatments at 5–25 μmol L~(-1), but it was significantly inhibited when the plants were exposed to solutions with higher Cd concerntrations(50 and 75 μmol L~(-1)). Exposure to Cd significantly increased the CA activity in P. divaricata, which reached a maximum value of 21.27 U mg~(-1) proteins at the 25 μmol L~(-1)Cd treatment, and the CA activity and shoot Cd concentration were positively correlated at solutions Cd of ≤ 25 μmol L~(-1). Moreover, two protein bands appeared on the denatured gel electrophoresis of purified CA, indicating that P. divaricata may have CA isomers with their respective molecular weights at around 60 and 55 k Da, at least one of which is Cd-bound. In addition, trace amounts of Cd in purified CA significantly increased with the supplied Cd concentration in nutrient solution(5–25 μmol L~(-1)). The results suggested that Cd may play a biological role by enhancing the activities and forming the active Cd-specific CA in the hyperaccumulator P. divaricata.  相似文献   

4.
Dark septate endophytic (DSE) fungi are ubiquitous and cosmopolitan,and occur widely in association with plants in heavy metal stress environment.However,little is known about the effect of inoculation with DSE fungi on the host plant under heavy metal stress.In this study,Gaeumannomyces cylindrosporus,which was isolated from Pb-Zn mine tailings in China and had been proven to have high Pb tolerance,was inoculated onto the roots of maize (Zea mays L.) seedlings to study the effect of DSE on plant growth,photosynthesis,and the translocation and accumulation of Pb in plant under stress of different Pb concentrations.The growth indicators (height,basal diameter,root length,and biomass) of maize were detected.Chlorophyll content,photosynthetic characteristics (net photosynthetic rate,transpiration rate,stomatal conductance,and intercellular CO2 concentration),and chlorophyll fluorescence parameters in leaves of the inoculated and non-inoculated maize were also determined.Inoculation with G.cylindrosporus significantly increased height,basal diameter,root length,and biomass of maize seedlings under Pb stress.Colonization of G.cylindrosporus improved the efficiency of photosynthesis and altered the translocation and accumulation of Pb in the plants.Although inoculation with G.cylindrosporus increased Pb accumulation in host plants in comparison to non-inoculated plants,the translocation factor of Pb in plant body was significantly decreased.The results indicated that Pb was accumulated mainly in the root system of maize and the phytotoxicity of Pb to the aerial part of the plant was alleviated.The improvement of efficiency of photosynthesis and the decrease of translocation factor of Pb,caused by DSE fungal colonization,were efficient strategies to improve Pb tolerance of host plants.  相似文献   

5.
韩玮 《中国土壤与肥料》2022,(6):204-212,220
为探究镉(Cd)胁迫下丛枝菌根(AM)真菌对黑麦草(Lolium perenne)光合生理的影响,盆栽条件下以Cd浓度为0、5、15和30 mg·kg-1分别对黑麦草接种AM真菌摩西斗管囊霉(FM)、变形球囊霉(GV)、混合处理(FM+GV)以及不接种对照(NM)共16个处理。结果表明,Cd降低了AM真菌侵染;接种AM真菌则提高了黑麦草株高、叶绿素含量、荧光参数、地上部和根系氮(N)、Cd含量,增强光合作用,显著提高植物体内生理活性。在Cd浓度为30 mg·kg-1水平下,FM+GV处理的菌根侵染率最大,为42.7%,与NM相比,FM+GV处理的黑麦草叶片叶绿素含量、地上部和根系N含量分别提高26.2%、70.6%和85.3%;株高和地上干重分别提高34.1%和18.8%;PSⅡ最大光化学效率和PSⅡ潜在活性分别提高4.9%和19.7%;净光合速率、蒸腾速率和气孔导度分别增加19.8%、28.3%和14.7%;超氧化物歧化酶、过氧化物酶活性、可溶性蛋白含量分别是NM的1.3、1.5和1.8倍,丙二醛含量相较NM下降50.0%。土壤中Cd浓度与植株地上部和根内的Cd含量呈显著正相关,FM+GV处理的黑麦草地上部和根系Cd含量分别达到88.1和606.7 mg·kg-1。总体来看,FM+GV处理增加黑麦草光合生理抗性、吸收固持Cd能力的效果最为显著。  相似文献   

6.
植物对镉毒害的形态和生理响应研究进展   总被引:6,自引:0,他引:6  
Cadmium (Cd) contamination has posed an increasing challenge to environmental quality and food security.In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmentally friendly,especially the use of metal-hyperaccumulating plants to extract or mine heavy metals from polluted soils.Under Cd stress,responses of hyperaccumulator and non-hyperaccumulator plants differ in morphological responses and physiological processes such as photosynthesis and respiration,uptake,transport,and assimilation of minerals and nitrogen,and water uptake and transport,which contribute to their ability to accumulate and detoxify Cd.This review aims to provide a brief overview of the recent progresses in the differential responses of hyperaccumulator and non-accumulator plants to Cd toxicity in terms of growth and physiological processes.Such information might be useful in developing phytoremediation technology for contaminated soils.  相似文献   

7.
丛枝菌根真菌(Glomus mosseae)对玉米吸镉的影响   总被引:5,自引:0,他引:5  
盆栽试验研究了不同培养条件(土壤与河沙)下,3种施Cd水平(0、5、50 mg kg-1)对菌根玉米生长、根系侵染率及重金属Cd吸收的影响。结果表明:施Cd水平显著影响玉米吸Cd能力。随Cd浓度增加,各处理根系与地上部分Cd浓度和吸收量显著增加,各施Cd水平下玉米根系Cd浓度和吸收量远远高于地上部分。不同培养条件下,各处理也表现出明显的差异。以河沙为培养基质,接种菌根真菌显著增加玉米的生物量及根系侵染率;在高Cd水平下,接种处理玉米根系中的Cd浓度和吸收量较对照显著增加,但地上部分的Cd浓度和吸收量却相应降低。以土壤为培养基质,随施Cd水平提高,植株吸Cd量增加,但接种处理植株根部与地上部Cd浓度均显著低于对照。试验表明,丛枝菌根真菌Glomus mosseae可减少重金属Cd向玉米植株地上部的运输,将更多的Cd固持在菌根之中,这可能是菌根减轻宿主植物Cd毒害的一个重要机制。  相似文献   

8.
为揭示丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对芦竹耐镉(Cd)胁迫的作用及其机理,采用大棚盆栽试验,利用丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae,FM)、根内根孢囊霉(Rhizophagus intraradices,RI)、地表球囊霉(Glomus versiforme,GV)进行接种试验,研究了在Cd胁迫下接种AMF对芦竹生长、光合特性、矿质营养的影响。结果表明:AMF能够显著改善Cd胁迫下芦竹的生长状况,与对照相比,接种处理芦竹的株高增加19.09%~27.98%,叶长增加12.18%~31.06%,叶绿素相对含量SPAD值增加8.55%~9.36%,地上和根系生物量分别增加20.08%~31.41%、12.24%~24.12%,最大净光合速率增加7.08%~32.12%,芦竹根系全磷含量增加30.26%~46.05%。接种处理后芦竹地上Cd含量介于68~105.97 mg/kg,显著高于对照处理(42.20mg/kg),根系Cd含量介于110.67~221.47 mg/kg,显著高于对照处理(46....  相似文献   

9.
为有效评价菌根化苗在烤烟生产中的应用,对比研究了菌根化苗和常规生产烟苗不同生长期的农艺性状和主要经济性状。结果表明,菌根化烟苗根冠比均显著大于常规育苗组,株高、根长、茎围小于常规生产烟苗;移栽30 d的菌根化烟苗株高、茎围均小于常规育苗组;移栽60 d接种Gm.02和Gm.03的烟株株高大于常规生产烟苗,接种Gm.01和Gm.02的烟株茎围大于常规育苗组;移栽90 d的3种菌根化苗株高、茎围均大于常规育苗组。菌根化烟苗最大叶长在整个生育期内均小于常规生产烟苗;菌根化烟苗移栽30 d最大叶宽均小于常规育苗组,移栽60 d接种Gm.01菌根化烟株大于常规育苗组,移栽90 d,接种Gm.01和Gm.03菌根化烟株大于常规育苗组。菌根化苗均能提高烤烟产量、上等烟比例、均价及产值,但是不同的菌剂作用效果不同。  相似文献   

10.
干旱胁迫下丛枝菌根真菌对玉米生理生化特性的影响   总被引:1,自引:1,他引:0  
在土壤有效磷含量较高的条件下,研究了接种丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对不同水分处理梯度(田间最大持水量的70%、 45%和20%)条件下玉米生长和抗旱性的影响。结果表明,在三种不同水分处理条件下,接种AMF显著提高了玉米植株地上部的生物量,且对玉米地上部、 地下部全磷含量有显著提高作用。水分胁迫显著降低了玉米叶片水势,增加了玉米叶片脯氨酸、 丙二醛、 过氧化物酶和过氧化氢酶含量,而不同水分梯度条件下接种AMF均显著提高了植株叶片水势,降低了脯氨酸含量,提高了叶片保护酶(过氧化物酶和过氧化氢酶)活性从而减少丙二醛的积累,减轻植物叶片膜脂过氧化的伤害。由此说明,接种AMF在土壤有效磷含量较高的条件下能够与玉米根系形成良好的共生关系,提高玉米的抗旱性。  相似文献   

11.
M. SHARIF  N. CLAASSEN 《土壤圈》2011,21(4):502-511
A pot experiment was conducted to investigate the action mechanisms of arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake of Capsicum annuum L.in a sterilized fossil Oxisol.Three P levels of 0,10 and 200 mg kg-1 soil (P0,P10 and P200,respectively) without and with AM fungal inoculation were applied as Ca(H2PO4)2·H2O.Shoot dry matter yields and shoot P uptake increased significantly (P > 0.05) by the inoculation of AM fungi at P0 and P10.Root length and P concentration in soil solution increased with the inoculation of AM fungi but the root:shoot ratio decreased or remained constant.Around 50% roots of inoculated plants were infected by AM and the external hyphae amounted to 20 m g-1 soil at P10 and P200.The hyphae surface area of the infected root cylinder amounted to 11 and 2 cm-2 cm-2 root at P0 and P10,respectively.The increased P uptake of inoculated plants was mainly because of an up to 5 times higher P influx of the infected root.Model calculations showed that the root alone could not have achieved the measured P influx in both infected and non-infected roots.But the P influx for hyphae calculated by the model was even much higher than the measured one.The P uptake capacity of hyphae introduced in the model was too high.Model calculations further showed that the depletion zone around roots or hyphae was very narrow.In the case of the root only 7% of the soil volume would contribute P to the plant,while in the case of hyphae it would be 100%.The results together with the model calculations showed that the increased P uptake of AM inoculated plants could be explained partly by the increased P concentration in the soil solution and by the increased P absorbing surface area coming from the external hyphae.  相似文献   

12.
Fertilizer application efficiently increases crop yield, but may result in phosphorus(P) accumulation in soil, which increases the risk of aquatic eutrophication. Arbuscular mycorrhizal fungi(AMF) inoculation is a potential method to enhance P uptake by plant and to reduce fertilizer input requirements. However, there has been limited research on how much P application could be reduced by AMF inoculation. In this study, a pot experiment growing asparagus(Asparagus officinalis L.) was designed to investigate the effects of AMF inoculation and six levels of soil Olsen-P(10.4, 17.1, 30.9, 40.0, 62.1, and 95.5 mg kg^-1for P0, P1, P2, P3, P4 and P5treatments, respectively) on root colonization, soil spore density, and the growth and P uptake of asparagus. The highest root colonization and soil spore density were both obtained in the P1treatment(76% and 26.3 spores g^-1 soil, respectively). Mycorrhizal dependency significantly(P 〈 0.05) decreased with increasing soil Olsen-P. A significant correlation(P 〈 0.01) was observed between mycorrhizal P uptake and root colonization, indicating that AMF contributed to increased P uptake and subsequent plant growth.The quadratic equations of shoot dry weight and soil Olsen-P showed that AMF decreased the P concentration of soil required for maximum plant growth by 14.5% from 67.9 to 59.3 mg Olsen-P kg^-1. Our results suggested that AMF improved P efficiency via increased P uptake and optimal growth by adding AMF to the suitable P fertilization.  相似文献   

13.
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity.  相似文献   

14.
Mycorrhiza helper bacteria (MHB) can promote the formation and functioning of arbuscular mycorrhizal (AM) symbiosis, but their role and application potential in coping with soil-borne diseases are still unclear. A 14-week greenhouse pot experiment was conducted to obtain several actinomycete strains helping AM symbiosis in suppressing the Phytophthora blight of pepper (Capsicum annuum L.), using a soil inoculated with Phytophthora capsici after sterilization. Five Streptomyces strains, including S. pseudogriseolus, S. albogriseolus, S. griseoaurantiacus, S. tricolor, and S. tendae, as well as the AM fungus (Funneliformis caledonium) were tested. The Phytophthora blight severity reached 66% at full productive stage in the uninoculated control, and inoculation of F. caledonium, S. griseoaurantiacus, and S. tricolor alone significantly decreased (P < 0.05) it to 47%, 40%, and 35%, respectively. Compared to F. caledonium alone, additional inoculation of S. tricolor or S. tendae, which were isolated from the rhizosphere of a healthy individual in an infected field, significantly elevated (P < 0.05) root mycorrhizal colonization, root biomass, fruit yield, and total K acquisitions of pepper and further significantly decreased (P < 0.05) blight severity. According to the feature of enhancing disease-suppression by AM symbiosis, both S. tricolor and S. tendae were confirmed as MHB strains here. Specifically, S. tendae had a stronger performance in directly accelerating mycorrhization, while S. tricolor antagonist to the pathogenic P. capsici. Furthermore, S. griseoaurantiacus with the independent disease-suppression function was not an MHB strain here. The redundancy analyses demonstrated that when AM fungus was present, root mycorrhizal colonization replaced soil pH becoming the main factor affecting pepper Phytophthora blight. Thus, S. tricolor and S. tendae seemed to have the value of preparation and application in the future to help AM symbiosis against pepper Phytophthora blight.  相似文献   

15.
《Applied soil ecology》2007,35(3):502-510
The effect of arbuscular mycorrhiza (AM) on cadmium (Cd) uptake by tobacco (Nicotiana tabacum L.) was studied in a pot experiment. Three commercial varieties, Basma BEK, K326 and TN90, representing three distinct tobacco types, were each grown in a different soil with nutritional conditions matching as closely as possible their requirements for field production. Cd concentrations in these soils were within the background range. Each variety was either non-mycorrhizal or inoculated with one of five AM fungal isolates. Cd concentration in leaves was decreased by inoculation with selected isolates in the K326 and TN90 variety grown in acidic soils. In contrast, it was increased by inoculation with most isolates in the Basma BEK variety grown in a basic soil with low Cd availability. Besides, plants of all three varieties had significantly higher leaf concentrations of phosphorus and nitrogen in some inoculated treatments. The percentage of root colonisation was mostly low in the inoculated treatments. In the Basma BEK and TN90 variety, the tested AM fungal isolates differed in their ability to colonise roots, but no correlation was found between the root colonisation of an isolate and its effects on the Cd concentrations in tobacco leaves. One isolate influenced most pronouncedly Cd concentrations and improved mineral nutrition in all the three combinations of variety and soil despite its low colonisation levels. AM symbiosis probably affected Cd uptake of tobacco by indirect mechanisms such as stimulation of root growth or mycorrhizal plant mediated changes in chemical or biological soil properties.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of Lotus corniculatus L. Specifically, the role of rhizosphere fungal community in the growth of Lotus corniculatus L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with Chaetomium and Humicola showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.  相似文献   

17.
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号