首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the elastic finite element analysis of the RC beam-wider-than-wall joint, two large-scale specimens of the direct anchoring beam-wider-than-wall joint are designed to test the joint behavior. The stresses and slips of longitudinal bars in the beam, load-bearing capacity and destruction form are observed and analyzed. The analysis and test results show that: The wide beam should be extended through into the wall for some length to make the flexural stress uniform along beam section width, thus the beam's bearing capacity can be achieved. The anchorage condition of the upper longitudinal bar in the beam outside the wall's width is poor, thus the anchorage length prescribed in the current CODE is not enough to ensure the bearing capacity and ductility of joints. The beam stirrups are very important to the anchorage of the upper longitudinal bar in the beam outside the wall's width. If the quantity of the beam stirrups is not enough, the wide beam in the joint area would have more cracks which decrease the bearing capacity and ductility of joints. Finally, a novel spatial truss mechanism model for the beam-wider-than-wall joint is put forward.  相似文献   

2.
This paper analyzes the steel reinforced concrete large span transfer truss joints using the finite element analysis software ANSYS, and get the joints deformation and the mechanics increase, such as deformation properties, stress distribution. The monitoring results during construction phase show that nonlinear numerical simulation analysis, which is in good agreement with the test results, is an effective method for the mechanical property analysis on this kind of structural components.  相似文献   

3.
In order to study the mechanical behavior of corroded reinforced concrete beams strengthened with bolted steel plates, this paper designed 12 reinforced concrete beams. These beams were corroded by using accelerated electrochemical corrosion method with a designed corrosion ratio of 10%. The pre-compression experiments were performed for all RC beams before strengthening and the maximum crack width was controlled as 0.2 mm. According to the thickness of concrete cover, the beams were divided into 3 groups. Each group was composed of one comparative beam and three tested beams strengthened by steel plates bolted with study according to the thickness of steel plates which were 3 mm, 4 mm and 5 mm, respectively. It was shown that the strain distributions along the height of the strengthened beams at middle-span were in good agreement with the plain section assumption basically. The serviceability performances of corroded RC beams were significantly improved and these ultimate bearing capacities increased obviously. The steel plate bolted with stud effectively reduced the crack width and the extension height of reinforced concrete beams. It was indicated that an increase of steel plates with 35 mm resulted in a decrease of deflection by 13%51% when beams had the same thickness of concrete cover and corrosion ratio. Influence of the thickness of concrete cover on the ultimate bearing capacity was not obvious.  相似文献   

4.
输电钢管塔空间KK型管板连接节点极限承载力   总被引:1,自引:0,他引:1  
空间KK型管板连接节点作为输电钢管塔中最主要的节点型式,其安全性是整个塔架结构安全的重要保证。相比较于平面K型节点,在考虑实际结构中节点空间效应后的KK型节点的受力性能更为复杂。在平面K型管板节点的试验研究基础上,对两类空间KK型管板节点展开参数化分析,重点讨论了节点几何尺寸参数和主管轴压应力比等因素对节点极限承载力的影响变化规律。结合大量有限元参数分析所得计算结果,并综合考虑各种因素对节点极限承载力的影响,提出了空间KK型管板连接节点在主管管壁局部屈曲破坏模式下的极限承载力建议计算方法。  相似文献   

5.
在综合分析现有水平荷载作用下桩基分析方法的基础上,建立了考虑桩侧土体受力状态的斜坡刚性桩力学模型;根据极限平衡原理,建立横向荷载作用下斜坡刚性桩弯矩和应力平衡方程;引入考虑斜坡影响的p-y曲线方法,提出了综合考虑桩侧土体极限承载力与水平抗力系数沿深度呈线性增加的侧向极限承载力与土体抗力承载力系数计算方法,同时,将该方法应用于计算实例,通过与已有有限元和理论计算方法对比分析,计算结果验证了本文方法的合理性与可行性;并利用该方法,分析了斜坡坡角、桩土接触面系数以及地基水平抗力系数对斜坡刚性桩承载特性的影响因素。分析表明:斜坡的坡角、桩土接触面系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响明显,而桩侧土的抗力系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响不明显。  相似文献   

6.
玉米种子与脱粒部件碰撞过程中的接触力学分析   总被引:2,自引:0,他引:2  
为进一步分析脱粒过程中玉米种子机械应力裂纹的产生机理,为新式种用脱粒机的研制提供理论支持,运用赫兹理论和材料力学分析了玉米种子产生机械脱粒损伤的临界速度,分析了脱粒部件与玉米种子的力学接触过程,并进一步比较了不同脱粒部件与玉米种子的碰撞过程。研究发现:玉米种子与脱粒部件相互接触时的相对运动速度大于Vz时,玉米种子将产生机械应力裂纹,甚至破碎;钉齿和板齿及其上不同部位对玉米种子的力学作用效果存在明显差异;玉米种子与脱粒部件的接触面积越大,受到的打击力就越大,且钉齿对玉米种子的打击力大于板齿的打击力。  相似文献   

7.
通过对核心区应用X形配筋增强的高强钢筋异形柱边节点和同等条件下未被增强的高强钢筋异形柱边节点进行拟静力试验研究,对比分析异形柱边节点的破坏特征、滞回曲线、承载能力、位移及延性、刚度退化、耗能能力等抗震性能指标。研究结果表明,配置HRB500高强钢筋异形柱边节点比配置600 MPa级的边节点承载能低,但滞回性能好,变形能力强,刚度退化推迟,耗能能力强;在核心区加入X形配筋,均可以改善高强钢筋异形柱边节点的破坏特征,使边节点抗剪能力、变形能力、耗能能力增强,刚度退化推迟,提高异形柱边节点抗震性能,配置HRB500高强钢筋的试件核心区应用X形配筋加强后抗震性能提高效果更好。  相似文献   

8.
A parametric analysis was carried out to investigate the gusset plate to CHS XX joints with the finite elements method. The effects of web loading proportion, geometric parameters and axial stress in chord on the failure modes and the ultimate strength were employed. It is found that the web loading proportion have different effects on the ultimate strength with different angles between two gussets. And the ultimate strength of joints decreased no matter the axial stress in chord was positive or negative. Based on the regression analysis, a formula was proposed for predicting the ultimate strength of the gusset plate to CHS XX joints.  相似文献   

9.
The FEM simulation analysis method was studied to identify the ultimate bearing capacity of cold-formed steel portal frames.In this study,the beam-spring system was used to simulate the performance of joints.The initial imperfection of frame components was considered.The deformation performance and failure features of portal frame structures under vertical loads also were studied.The analytic results of the FEM simulation analysis method are close to the values obtained by experimentation.The ultimate bearing capacity of portal frames were computed by changing parameters such as the web plate thickness,the flange width,the plate thickness of brackets,the portal frame roof inclination,and the column footing stiffness.The analytic results indicate that the ultimate bearing capacity may be improved when the parameters mentioned above are increased.  相似文献   

10.
On the basis of experimental tests,a formula is proposedfor the computation of the load-deformation curves of the single highstrength bolted connections in axial shear forces,which is a piecewisefunction describing three stages of friction,slipping and bearing of theconnections,and is also suitable for the non-slip connections.The limitstate method is used to compute the behaviour of high strength boltedconnections subject to eccentric shear,in which each bolt obeys thenon-linear relationship aforementioned.In this paper,the computer pro-gram is worked out to solve the non-linear problems.Analytical resultsare shown to be in general good agreement with experimental data.  相似文献   

11.
Rotary hinges are temporary joints connecting arch ribs with the abutments of rigid frame arch bridges during the vertically downward rotating construction process.We probed the mechanical properties of a rotary hinge.Its stress distribution was simulated in contact FEM during the vertically downward rotating construction of a rigid frame arch bridge.The results show that nearly the entire structure of the rotary hinge is in a low-stress state with only a minor area in a high-stress state.By strengthening some local structures,rotary hinge construction security could be satisfied by its mechanical properties during vertically downward rotating construction.  相似文献   

12.
Three-dimensional liquid-solid coupling finite element analysis for thermo-elasto-hydrodynamic performances for a water-lubricated bearing system is conducted using finite element code, based on the influence coefficient method, and nonlinear optimization method. Meanwhile, the code is validated. Numerical results show that significant elastic deformation and thermal deformation, contact pressure with certain amplitude, and large temperature rise over the range of the small film thickness-roughness ratio can occur for the bearing. Therefore, the above deformation and temperature rise should be considered in designs and applications of water-lubricated bearings.  相似文献   

13.
It is of important significance to study the ultimate bearing capacity of foundation in three-dimensional stress. In this paper, a formula is established for ultimate bearing capacity of foundation taking three-dimensional stress into account. According to the numerical results, the ultimate bearing capacity of foundation with consideration of three-dimensional stress is improved, which is of important significance for engineering.  相似文献   

14.
In order to study the mechanical behaviors of irregular joints in rigid steel frames which had been used in large scale power plant, 6 specimens in 1/4 scale of the prototype model were designed according to different axial compression ratio and section height ratio of beams and were tested under low cyclic reversed loading.Based on the failure law of specimens, the main factors that affect the bearing capacity of the irregular joints were analyzed.By the division of panel zone, the calculating formula was put forward according to mechanical principles.It is found that the difference between calculating results and experimental results is about 18%.And the proposed method for calculating the irregular joints in rigid steel frames is feasible.  相似文献   

15.
A nonlinear finite elements analysis was carried out to investigate the failure modes and the ultimate strength of gusset plate to CHS KK joints. The effects of web loading proportion, geometric parameters and axial stress in chord on the ultimate strength were considered. It was found that the ultimate strength of gusset plate to CHS KK joints was greatly decreased with the increase of web loading proportion when the proportion value was positive; however, the web loading proportion had less effect on the ultimate strength when the proportion value was negative. And with the varying of web loading proportion, the effect of the axial stress in chord on the ultimate strength of KK joints had a complex effect on the joint mechanic behavior. Based on the regression analysis, a formula was proposed for predicting the ultimate strength of gusset plate to CHS KK joints.  相似文献   

16.
In order to make fire resistance design of high strength steel columns in building structures, the numerical calculation method on load bearing capacity of high strength steel columns at elevated temperature was investigated. By taking the mechanical property of high strength steel at elevated temperature into consideration, extension was made on the inverse calculation segment length method and the program to compute the load bearing capacity of high strength steel columns at elevated temperature was performed. The program was adopted to compute the load bearing capacity. The results obtained by the program and the finite element analysis were compared and good agreement had been found. The influence of magnitude, distribution mode of residual stress and initial geometry imperfection on ultimate load bearing capacity was analyzed by employing the program. It is shown that the extended method can be is shown used to calculate the load bearing capacity of high strength steel columns at elevated temperature; the magnitude and distribution mode of residual stress had little influence but the geometry imperfection have significant influence on ultimate load bearing capacity.  相似文献   

17.
Rock masses have defects,such as joints and fractures, which are the main seepage passages.Joints and fractures often are treated as parallel plates with the seepage state kept steady and the ground stress constant. When changes take place in joints and fractures as a result of stress changes induced by excavation,joints or fractures may be wedge-shaped,and the distribution of piezometric head along the fracture will be nonlinear.A distribution function of piezometric head is suggested and compared with the results of previous research.The influence of this function on the calculation of the slope safety factor is investigated.The study shows that this function is reasonable.  相似文献   

18.
To obtain the distribution characteristic of contact stress and the bulk temperature on the surface of herringbone gears, parameter modeling of gears was carried out by parametric design language. A numerical simulation was given to calculate the contact stress field and the steady thermal field by combining heat transfer theory, tribology theory, and mesh theory. The distribution of contact stress, the bulk temperature and heat flux also were analyzed. The analysis results show that the distribution of the load along the contact line possesses regularity. The heat flux along the tooth depth direction decreases first and then increases. The effect of thermal conduction of the tooth is stronger than that of convective heat transfer. The conclusion indicates that the finite element emulation method can be used to estimate the transmission performance of herringbone gears.  相似文献   

19.
For the convenience of industrialized production and site operation,specification design of PPCRP (precast prestressed concrete ribbed panels) is discussed. In order to obtain ultimate bearing capacity,bending rigidity and crack resistance,four PPCRP with two types of spans are studied,and the results show that PPCRP can satisfy the requirements of bearing capacity in construction phase and can serve as stay-in place formwork. To verify the mechanical property,shear behavior on contact interface of composite member and moment redistribution factor of continuous composite member,two single-span composite members and one two-span continuous composite member are studied. It is indicated that computational method for bearing capacity of composite member can be the same as cast-in-situ concrete slab. Besides,section strain analysis for composite member in two-loading is conducted,which suggests that thickness of bottom board can be used as calculated height with the consideration of two-loading.  相似文献   

20.
Mechanical analysis for the discrete teeth harmonic drive gear pair is carried out. The force on discrete teeth is calculated based on the deformation coordination equation,and the contact stress of meshing pair is obtained by Hertz equation. According to transmission periodicity of the discrete gear harmonic wave and the input angle values of continuous sampling wave generator,the distribution of discrete teeth harmonic drive meshing force and contract stress in rigid tooth profile,tooth wave generator and discrete teeth is obtained. By studying the top cutting phenomena in rigid tooth profiles,the change trend of meshing force and contact stress on the contact surface is found,and positions for high meshing force and high contact stress in transmission are also found,in order to provide reference for further intensity and structure optimization design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号