首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒸散发是水资源分配利用的依据,能够估算出不同气候环境、不同区域的蒸散发是目前研究的重点。这些年运用遥感手段建立模型,结合地面气象站的气象数据、卫星影像等信息,提取参数建立模型来估算蒸散发的方法已经有了较为广泛的运用。其中,利用能量平衡来建立模型尤为广泛,不同的模型,选取参数、处理方法上有所不同,着重针对SEBAL、SEBS估算模型进行详细的对比介绍,SEBAL模型是具有较为坚实的物理基础,已经在平原、盆地、流域等区域进行了成功的应用,SEBS模型与SEBAL模型在模型建立原理上一致,但在计算感热通量H时,采用总体大气的相似理论,引入了热传输粗糙度长度。对这两模型进行了系统学习分析,并针对在新疆未来可开展的工作进行展望。  相似文献   

2.
Eddy covariance (EC) systems are being used to assess the accuracy of remote sensing methods in mapping surface sensible and latent heat fluxes and evapotranspiration (ET) from local to regional scales, and in crop coefficient development. Therefore, the objective was to evaluate the accuracy of EC systems in measuring sensible heat (H) and latent heat (LE) fluxes. For this purpose, two EC systems were installed near large monolithic weighing lysimeters, on irrigated cotton fields in the Texas High Plains, during the months of June and July 2008. Sensible and latent heat fluxes were underestimated with an average error of about 30%. Most of the errors were from nocturnal measurements. Energy balance (EB) closure was 73.2–78.0% for daytime fluxes. Thus, daylight fluxes were adjusted for lack of EB closure using the Bowen ratio/preservation of energy principle, which improved the resulting EC heat flux agreement with lysimetric values. Further adjustments to EC-based ET included nighttime ET (composite) incorporation, and the use of ‘heat flux source area’ (footprint) functions to compensate ET when the footprint expanded beyond the crop field boundary. As a result, ET values remarkably matched lysimetric ET values, with a ‘mean bias error ± root mean square error’ of −0.03 ± 0.5 mm day−1 (or −0.6 ± 10.2%).  相似文献   

3.
基于SEBAL模型的小麦水分生产率研究   总被引:3,自引:2,他引:1  
基于能量平衡原理,运用SEBAL模型和Landsat8影像反演估算了山西省晋中市的小麦水分生产率。首先根据Landsat8卫星影像,反演了晋中地区净辐射通量、土壤热通量和感热通量,使用能量平衡方程计算了水分蒸散;然后基于晋中小麦的产量统计数据,对晋中小麦的产量进行插值并栅格化;最后利用水分生产率公式计算了研究区小麦水分生产率。结果表明,研究区内的太谷、榆社、介休3站点反演的日蒸散量分别为2.93、3.82、3.17 mm/d,范围为0.41~7.22 mm/d,与根据Penman-Monteith公式计算的结果 (2.57、3.48、3.43 mm/d)大致相等,误差范围在10%左右;研究区小麦水分生产率均值为0.94 kg/m3,最高达到2.50 kg/m3,处于合理范围内,可以对晋中地区提高水分利用效率提供有效参考。  相似文献   

4.
【目的】及时准确地获取农田蒸散发量,为科学管理农田灌溉、精准估算作物产量和预报土壤水分动态、合理开发水资源等提供有效依据。【方法】以广利灌区为研究对象,基于SEBAL模型利用Landsat-8数据对研究区域农田蒸散发进行估算,通过地表参数计算净辐射通量、土壤热通量和感热通量,利用余项法求得潜热通量及瞬时蒸散发。假定24 h内蒸散比不变,由瞬时蒸散发扩展到日蒸散发量,最终求得研究区的日平均蒸散发量,将模型计算结果与彭曼公式进行了对比,同时结合灌区提供数据对计算结果进行了验证。【结果】彭曼公式计算2014年5月6日和2015年9月14日蒸散量与实测结果相差分别为5.2%和9.4%,SEBAL模型估算得到2014年5月6日和2015年9月14日的日蒸散量与灌区提供日蒸散量相差4.5%、6.0%,且冬小麦及夏玉米蒸散发在空间上存在一定的差异性,主要集中在灌区中部区域及西南区域。【结论】SEBAL模型计算结果具有较高的精度,而且方法相对快捷高效。  相似文献   

5.
【目的】评价SEBAL模型在估算内蒙古包头市土默特右旗腾发量时的适用性。【方法】基于2015年作物生育期内的Landsat8遥感影像,建立SEBAL模型,估算腾发量,利用FAO Penman-Monteith公式与水量平衡法估算得到腾发量进行了验证及评价,并采用多元逐步回归方法对其影响因素进行了分析。【结果】日腾发量的分布具有明显的空间差异性,呈现出"山峰型"变化趋势。SEBAL模型腾发量估算值与水量平衡法估算值相比,相对误差的平均值为6.053%;Penman-Monteith公式计算得到的日腾发量与水量平衡法估算值相差7.682%,都在10%以内,达到了精度要求,且SEBAL模型估算腾发量的精度高于Penman-Monteith公式。日腾发量与NDVI和地表温度相关性显著,由二者建立了最优的多元逐步回归方程。【结论】在缺乏数据的情况下,利用SEBAL模型可以较为准确地估算出土右旗的腾发量,且NDVI和地表温度对其的影响较大。  相似文献   

6.
Different methods have been developed to estimate evapotranspiration from remote sensing data, from empirical approaches such as the simplified relationship to complex methods based on remote sensing data assimilation along with SVAT models. The simplified relationship has been applied from small spatial scale using airborne TIR images to continental scale with NOAA data. Assimilation procedures often require remote sensing data over different spectral domains to retrieve input parameters which characterize surface properties such as albedo, emissivity or Leaf Area Index. A brief review of these different approaches is presented, with a discussion about the main physical bases and assumptions of various models. The paper reports also some examples and results obtained over the experimental area of the Alpilles Reseda project, where various types of models have been applied to estimate surface fluxes from remote sensing data.  相似文献   

7.
利用波文比能量平衡法对新疆吐哈盆地葡萄园的蒸散变化规律进行了研究。结果表明,葡萄园水热平衡各分量的日变化呈典型的单峰曲线,潜热、感热和土壤热通量都随净辐射的增减而增减,但峰值出现的时间和大小各异,潜热通量占净辐射能量支出的大部分,其变化规律与净辐射的日变化规律一致性最好,土壤热通量变化很平缓,趋势与净辐射基本相同,但滞后净辐射2~3h。在晴朗无云的条件下,葡萄蒸散速率日变化呈单峰型。蒸散从早晨8:00以后出现,迅速增加,到中午13:00-15:00达到峰值,随后蒸散速率迅速下降;葡萄生长期内耗水强度呈现先增大后减小的趋势,果粒膨大期耗水强度最大为8.78mm/d,葡萄整个生长期内的日均蒸发蒸腾量为5.58mm,蒸发蒸腾总量为1 228.45mm。  相似文献   

8.
[目的]在无法根据实测值得到具体模型参数的地域,对经验参数进行优化以提高区域蒸散发模型的精度.[方法]通过黑河流域生态水文过程综合遥感试验水文气象观测数据集中的大满超级站气象要素梯度观测系统的数据,研究玉米农田生态系统的蒸散发模型优化问题.采用差分进化自适应算法,以潜热通量和感热通量为优化目标,引入能量闭合因子对模型参...  相似文献   

9.
To monitor seasonal water consumption of agricultural fields at large scale, spatially averaged surface fluxes of sensible heat (H) and latent heat (LvE) are required. The scintillation method is shown to be a promising device for obtaining the area-averaged sensible heat fluxes, on a scale of up to 10 km. These fluxes, when combined with a simple available energy model, can be used to derive area-averaged latent heat fluxes. For this purpose, a Large Aperture Scintillometer (LAS) was operated continuously for more than one year over a tall and sparse irrigated oliveyard located in south-central Marrakesh (Morocco). Due to the flood irrigation method used in the site, which induces irregular pattern of soil moisture both in space and time, the comparison between scintillometer-based estimates of daily sensible heat flux (HLAS) and those measured by the classical eddy covariance (EC) method (HEC) showed a large scatter during the irrigation events, while a good correspondence was found during homogenous conditions (dry conditions and days following the rain events). We found, that combining a simple available energy model and the LAS measurements, the latent heat can be reliably predicted at large scale in spite of the large scatter (R2 = 0.72 and RMSE = 18.25 W m−2) that is obtained when comparing the LAS against the EC. This scatter is explained by different factors: the difference in terms of the source areas of the LAS and EC, the closure failure of the energy balance of the EC, and the error in available energy estimates. Additionally, the irrigation efficiency was investigated by comparing measured seasonal evapotranspiration values to those recommended by the FAO. It was found that the visual observation of the physical conditions of the plant is not sufficient to efficiently manage the irrigation, a large quantity of water is lost (≈37% of total irrigation). Consequently, the LAS can be considered as a potentially useful tool to monitor the water consumption in complex conditions.  相似文献   

10.
Complete knowledge of all components of the water balance is essential to optimize water use in irrigated agriculture. However, most water balance components are very difficult to measure in terms of the required time interval and due to the complexity of the processes. An unsaturated zone model is a useful tool for predicting the effects of agricultural management on crop water use and can be used to optimize agricultural practices in view of minimizing the agricultural water use. For the irrigated areas in Minqin County of northwest China, the physically based one-dimensional agro-hydrological model SWAP (Soil, Water, Atmosphere and Plant) for water movement and crop growth was applied to reveal all the components of the water balance at multiple sites. This model has a varying level of abstraction referring to simulated processes in time and space. A combination of field, meteorological and aerial data was used as input to the model. Inverse modeling of evapotranspiration (ET) fluxes was followed to calibrate the soil hydraulic functions by using the parameter estimation package PEST. Surface Energy Balance System (SEBS) was used to estimate actual ET fluxes from NOAA AVHRR satellite images. Simulations were carried out for 15 different sites in Minqin County by using wheat (Triticum aestivum L.) as a test crop, but only three sites were selected for model calibration and evaluation. The period of simulation for the whole wheat growing season was from 1 April 2004 to 30 July 2004 and detailed analyses were performed for all sites. SWAP simulated soil water dynamics well and the distributed SWAP model is a useful tool to analyze all water balance components.  相似文献   

11.
SEBAL and METRIC remote sensing energy-balance based evapotranspiration (ET) models have been applied in the western United States. ET predicted by the models was compared to lysimeter-measured ET in agricultural settings. The ET comparison studies showed that the ET estimated by the remote sensing models corresponded well with lysimeter-measured ET for agricultural crops in the semi-arid climates. Sensitivity analyses on impacts of atmospheric correction for surface temperature and albedo showed that the internal calibration procedures incorporated in the models helped compensate for errors in temperature and albedo estimation. A repeatability test by two totally independent model applications using different images, operators and weather datasets showed that seasonal estimations by the models have high repeatability (i.e. stable results over ranges in satellite image timing, operator preferences and weather datasets). These results imply that the SEBAL/METRIC remote sensing models have a high potential for successful ET estimation in the semi-arid United States.  相似文献   

12.
【目的】探索吉兰泰及周边地区蒸散发的时空变化规律。【方法】以吉兰泰为对象,利用MODIS数据通过SEBAL模型估算了研究区2017年植被生长季5—10月的日蒸散发,并分析了蒸散发与环境因子的相关性。【结果】①生长季日平均蒸散量整体趋势呈单峰型分布趋势,日均蒸散量最大值在7月(3.98 mm),最小值在10月(1.11 mm);②在空间分布上,研究区东南部蒸散发最高,东北部蒸散发最低;不同土地利用类型中蒸散发值由大到小分别为林地、耕地、草地、戈壁、沙漠;各土地利用类型蒸散发量的时间动态表现一致,呈生长期>生长初期>生长后期;③归一化植被指数、高程与蒸散发正相关,风速以及地表温度与蒸散发负相关。【结论】SEBAL模型估算的蒸散发与P-M作物系数法的蒸散发进行对比,相对误差在允许范围之内,表明SEBAL模型对本研究区蒸散发的估算是可靠的。研究区靠近山地的蒸散发大于荒漠区的蒸散发。在植被生长季中生长初期的蒸散发受温度和风速影响最大,生长期和生长后期的蒸散发受地表温度和高程影响最大。  相似文献   

13.
Energy balance measurements were carried out in a mango orchard during two growing seasons in the semi-arid region of Brazil. The actual evapotranspiration (ET) was acquired by eddy correlation (EC) and Bowen ratio energy balance (BR) techniques. The daily energy balance closure in the EC measurements showed an average gap of 12%, with a root mean square error (RMSE) of 1.7 MJ m−2 d−1. Three different correction procedures were tested for closing the energy balance from the EC system: (1) the surface energy balance residual method (RES), (2) the Bowen ratio determined from the EC fluxes, the combination approach (EC_BR), and (3) a new regression energy balance closure technique (REG). All closing energy balance methods presented good correlation with the direct EC measurements, but the trends were not similar. The latent heat fluxes estimated by the BR method—λE BR—were higher than those from the direct EC measurements—λE EC. When using the RES method, the half-hour λE EC measurements represented around 88% of the λE RES values, as the uncertainties of net radiation—R n—and soil heat fluxes—G—are propagated into the RES method. The latent heat flux derived from the combination approach—λE EC_BR—also brings these uncertainties, being the agreements comparable with those for RES method. It was therefore concluded that a single correction method for EC measurements considering only the latent and sensible heat fluxes does not exist. A new way to solve the lack of energy balance closure from EC techniques was tested by means of a curve fitting, the REG method. Considering the REG corrections applied to the energy balance components involving all periods of the day and the average conditions of the two growing seasons, half-hour values of λE EC were overmeasured by 18%, H EC was undermeasured by 17%, and G values required a correction of 466%. The REG method appeared promising because it considers different weights for all energy balance components in the optimization process. Taking the REG results for the drier second growing season as a reference, it was concluded that seasonal ET values by the other methods in mango orchard ranged from 7 to 28% higher, showing that turbulent flux measurements lack accuracy for executing on-farm water-saving programmes and calibrating transient soil water flow models.  相似文献   

14.
应用遥感方法计算区域蒸散发具有很多常规方法所没有的优势.在基于地表能量平衡原理的SEBAL模型基础上提出了将新一代对地观测数据MODIS应用于反演区域地表蒸散的计算方法,并对新疆焉耆盆地的日蒸散发与月蒸散发情况进行了计算模拟,获取了相关地面特征参数.通过与基于ETM数据的SEBAL模型计算结果进行对比分析,验证了MODIS数据计算结果的合理性,并利用研究区实测水面蒸发值与区域水均衡方法对MODIS计算结果进行进一步的验证,说明了利用MODIS数据反演区域蒸散发的方法是切实可行的.  相似文献   

15.
农田水热传输过程的量化对于农业用水管理和作物灌溉制度的制定具有重要意义。本文利用波文比通量观测系统实测数据和气象站资料,对覆膜滴灌紫薯农田的水热通量变化规律及其对环境因子的响应进行了研究。结果表明:潜热通量是全生育期覆膜滴灌农田能量支出的主要部分,显热通量和土壤热通量支出占比较小,全生育期潜热通量、显热通量、土壤热通量支出占比分别为69.12%、25.14%、6.57%。不同天气条件下,显热通量的大小和变化范围均小于潜热通量。潜热通量对降雨和灌溉的响应最为显著,且降雨影响程度大于灌溉。净辐射、气温对潜热通量的影响较大,表层土温和风速变化的影响则较低,各环境因子主要通过直接和间接作用共同对潜热通量产生影响。该研究成果可以深化对覆膜滴灌紫薯农田水热传输规律的认识,为作物高效用水提供理论依据。  相似文献   

16.
A surface energy balance model based on the Shuttleworth and Wallace (Q J R Meteorol Soc 111:839–855, 1985) and Choudhury and Monteith (Q J R Meteorol Soc 114:373–398, 1988) methods was developed to estimate evaporation from soil and crop residue, and transpiration from crop canopies. The model describes the energy balance and flux resistances for vegetated and residue-covered surfaces. The model estimates latent, sensible and soil heat fluxes to provide a method to partition evapotranspiration (ET) into soil/residue evaporation and plant transpiration. This facilitates estimates of the effect of residue on ET and consequently on water balance studies, and allows for simulation of ET during periods of crop dormancy. ET estimated with the model agreed favorably with eddy covariance flux measurements from an irrigated maize field and accurately simulated diurnal variations and hourly amounts of ET during periods with a range of crop canopy covers. For hourly estimations, the root mean square error was 41.4 W m−2, the mean absolute error was 29.9 W m−2, the Nash–Sutcliffe coefficient was 0.92 and the index of agreement was 0.97.  相似文献   

17.
In this paper, based on the analysis of a long-term energy balance monitoring programme, a Bowen ratio-based method (BR) was proposed to resolve the lack of closure of the eddy covariance technique to obtain reliable sensible (H) and latent heat fluxes (λE). Evapotranspiration (ET) values determined from the BR method (ETc,corr) were compared with the upscaled transpiration data determined by the sap flow heat pulse (HP) technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level. Using the BR-corrected λE fluxes, a crop ET model implementing the Penman–Monteith approach, where the canopy surface resistance was determined from standard microclimatic variables, was applied to determine the crop coefficient values. The performance of the model was evaluated by comparing it with the sap flow HP data. The results of the comparison were satisfactory, and therefore, the proposed methodology may be considered valid for characterizing the ET process for orange orchards grown in a Mediterranean climate. By contrast to reports in the FAO 56 paper, the crop growth coefficient of the orange orchard being studied was not constant throughout the growing season.  相似文献   

18.
The North China Plain (NCP) is one of the most water stressed areas in the world. The water consumption of winter wheat accounts for more than 50% of the total water consumption in this region. An accurate estimate of the evapotranspiration (ET) and crop water productivity (CWP) at regional scale is therefore key to the practice of water-saving agriculture in NCP. In this research, the ET and CWP of winter wheat in 83 counties during October 2003 to June 2004 in NCP were estimated using the remote sensing data. The daily ET was calculated using SEBAL model with NOAA remote sensing data in 17 non-cloud days whereas the reference daily crop ET was estimated using meteorological data based on Hargreaves approach. The daily ET and the total ET over the entire growing season of winter wheat were obtained using crop coefficient interpolation approach. The calculated average and maximum water consumption of winter wheat in these 83 counties were 424 and 475 mm, respectively. The calculated daily ET from SEBAL model showed good match with the observed data collected in a Lysimeter. The error of ET estimation over the entire growing stage of winter wheat was approximately 4.3%. The highest CWP across this region was 1.67 kg m−3, and the lowest was less than 0.5 kg m−3. We observed a close linear relationship between CWP and yield. We also observed that the continuing increase of ET leads to a peaking and subsequent decline of CWP, which suggests that the higher water consumption does not necessarily lead to a higher yield.  相似文献   

19.
参考作物蒸发蒸腾量计算方法的应用比较   总被引:52,自引:6,他引:52  
应用国家"863"节水农业重大专项子课题示范现场的气象资料,对4种分属于不同类型的参考作物蒸发蒸腾量ET0计算公式进行了日ET0值的验证计算。结果显示,在时间序列上,随气象因素变化各方法计算的日ET0值呈相同的变化趋势,但计算值有较大的差异;选取FAO56Penman-Monteith公式计算结果为标准,Priestley-Taylor(1972)方法结果与之最为接近,其余依次是Irmark-Allen拟合法和Hargreaves-Samani(1985)法;不同天气类型条件下,Priestley-Taylor(1972)结果与FAO56Penman-Monteith有较高的一致性,而其他2种方法随n/N的减小,误差急剧增加,尤其是Hargreaves-Samani(1985)方法。  相似文献   

20.
基于陆面能量平衡方程的遥感模型   总被引:1,自引:1,他引:0  
介绍了卫星遥感反演水文气象模式所需的一些基本地面参数,进而得到整个流域尺度上的ET的方法,特别是基于陆面能量平衡方程的SEBAL模型的原理及工作流程,指出了模型的优点和不足,并研究探讨了利用SEBAL模型在海河流域水资源管理中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号