首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism (PDH), compare the degree of reduction of aldosterone with that of cortisol, and compare aldosterone concentrations of healthy dogs with those of dogs with PDH. ANIMALS: 17 dogs with PDH and 12 healthy dogs. PROCEDURE: For dogs with PDH, the initial dose of trilostane was selected in accordance with body weight. A CBC count, serum biochemical analyses, and ACTH stimulation tests were performed in each dog. Dogs were evaluated 1, 3 to 4, 6 to 8, and 10 to 12 weeks after initiation of treatment. Healthy dogs were evaluated only once. RESULTS: Serum aldosterone concentrations before ACTH stimulation did not change significantly after initiation of treatment with trilostane. At each evaluation after initiation of treatment, serum aldosterone concentrations after ACTH stimulation were significantly lower than corresponding concentrations before initiation of treatment. The overall effect of trilostane on serum aldosterone concentration was less pronounced than the effect on serum cortisol concentration. Median potassium concentrations increased slightly after initiation of treatment with trilostane. Dogs with PDH had significantly higher serum aldo sterone concentrations before and after ACTH stimulation than healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with trilostane resulted in a reduction in serum cortisol and aldosterone concentrations in dogs with PDH, although the decrease for serum aldosterone concentration was smaller than that for serum cortisol concentration. There was no correlation between serum concentrations of aldosterone and potassium during treatment.  相似文献   

2.
Trilostane is thought to be a competitive inhibitor of the 3beta-hydroxysteroid dehydrogenase (3beta-HSD), an essential enzyme system for the synthesis of cortisol, aldosterone and androstenedione. Due to its reliable clinical efficacy, trilostane is increasingly used to treat dogs with pituitary-dependant hyperadrenocorticism (PDH). The objective of our study was to investigate the effect of trilostane on precursor concentrations located before (17alpha-OH-pregnenolone, dehydroepiandrostenedione) and after (17alpha-OH-progesterone, androstenedione, 11-deoxycortisol, 21-deoxycortisol) the proposed enzyme inhibition, on end products of steroid biosynthesis (cortisol and aldosterone) and on endogenous adrenocorticotrophic hormone (ACTH) concentrations in dogs with PDH. Hormones of the steroid biosynthesis pathway were evaluated in 15 dogs before and 1h after injection of synthetic ACTH prior to (t(0)), in weeks 1-2 (t(1)) and in weeks 3-7 (t(2)) of trilostane treatment. Endogenous ACTH concentrations were measured at the same time points before performing the ACTH stimulation test. During trilostane treatment baseline and post-stimulation cortisol concentrations decreased significantly. Baseline serum aldosterone levels showed a significant increase; post-stimulation values decreased. Baseline and post-stimulation 17alpha-OH-pregnenolone and dehydroepiandrostenedione concentrations increased significantly. 17alpha-OH-progesterone and androstenedione levels did not change. Post-stimulation 21-deoxycortisol concentrations decreased significantly, baseline 11-deoxycortisol concentrations increased significantly. Endogenous ACTH levels showed a significant increase. The significant increase in 17alpha-OH-pregnenolone and dehydroepiandrostenedione concentrations confirms an inhibitory effect of trilostane on the 3beta-HSD. Since 17alpha-OH-progesterone concentrations did not change, but cortisol concentrations markedly decreased, trilostane seems to influence additional enzymes of the hormone cascade, like the 11beta-hydroxylase and possibly the 11beta-hydroxysteroid dehydrogenase.  相似文献   

3.
BACKGROUND: Increased concentrations of haptoglobin (Hp), a moderate acute phase protein, have been demonstrated in dogs with hyperadrenocorticism (HAC). Monitoring serum concentrations of Hp in hyperadrenocorticoid dogs before and after trilostane administration may provide valuable information on the response to therapy. OBJECTIVE: The aim of this study was to measure Hp concentrations in dogs with spontaneously occurring HAC at the time of diagnosis and after treatment with trilostane. METHODS: Serum Hp concentration was measured using an automatic biochemical assay based on Hp-hemoglobin binding and utilizing SB-7 reagent in 12 dogs with spontaneous HAC before and after treatment with trilostane (30 or 60 mg PO q 12-24 h). Post-treatment Hp concentrations were measured at the time the owner reported an improvement in clinical signs. Pretreatment and post-treatment Hp values were compared with reference values and with values from 4 healthy control dogs. RESULTS: Two dogs with HAC had pretreatment Hp values within the reference interval; 10 dogs had moderate (n = 8) or marked (n = 2) increases in Hp concentration. After treatment with trilostane, Hp concentration remained within the reference interval (n = 2), decreased to within the reference interval (n = 3), or remained moderately increased (n = 7; 3-10 g/L). Overall, a significant decrease was observed in Hp concentration after trilostane treatment compared with pretreatment values (P <.005). Both untreated and treated dogs with HAC had significantly higher Hp concentrations (P <.001) when compared with control dogs. CONCLUSIONS: Clinical control of HAC did not closely relate to serum Hp concentration. Further studies are required to assess whether this is because of inadequate control of disease or because a build-up of cortisol precursors or secondary effects of HAC affect Hp concentration.  相似文献   

4.
The aim of this study was to evaluate the role of aldosterone as an initiating and/or perpetuating factor in hypertension associated with pituitary-dependent hyperadrenocorticism (PDH) in dogs. Thirteen dogs with PDH and 11 healthy control dogs were used. In all dogs, arterial blood pressure and plasma sodium, potassium, basal aldosterone, post-ACTH aldosterone, basal cortisol and post-ACTH cortisol concentrations were measured. The tests were repeated 10 days and three months after the beginning of o,p'-DDD treatment in PDH dogs. In untreated PDH dogs, plasma aldosterone was significantly decreased, whereas cortisol, sodium and arterial blood pressure were significantly increased compared to healthy dogs. Hypertension remained in most treated PDH dogs despite normalisation of cortisol and persistently low aldosterone levels. These results did not demonstrate that aldosterone is involved in the development and perpetuation of hypertension in PDH. However, glucocorticoids seemed to play a major role as an initiating and perpetuating factor in PDH in dogs.  相似文献   

5.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in response to ACTH stimulation in healthy dogs, dogs with adrenal tumors, and dogs with pituitary-dependent hyperadrenocorticism (PDH). DESIGN: Prospective study. ANIMALS: 11 healthy control dogs, 9 dogs with adrenal-dependent hyperadrenocorticism (adenocarcinoma [ACA] or other tumor); 11 dogs with PDH, and 6 dogs with noncortisol-secreting adrenal tumors (ATs). PROCEDURE: Hyperadrenocorticism was diagnosed on the basis of clinical signs; physical examination findings; and results of ACTH stimulation test, low-dose dexamethasone suppression test, or both. Dogs with noncortisol-secreting ATs did not have hyperadrenocorticism but had ultrasonographic evidence of an AT. Concentrations of cortisol, androstenedione, estradiol, progesterone, testosterone, and 17-hydroxyprogesterone were measured before and 1 hour after i.m. administration of 0.25 mg of synthetic ACTH. RESULTS: All dogs with ACA, 10 dogs with PDH, and 4 dogs with ATs had 1 or more sex hormone concentrations greater than the reference range after ACTH stimulation. The absolute difference for progesterone, 17-hydroxyprogesterone, and testosterone concentrations (value obtained after ACTH administration minus value obtained before ACTH administration) was significantly greater for dogs with ACA, compared with the other 3 groups. The absolute difference for androstenedione was significantly greater for dogs with ACA, compared with dogs with AT and healthy control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs with ACA secrete increased concentrations of adrenal sex hormones, compared with dogs with PDH, noncortisol-secreting ATs, and healthy dogs. Dogs with noncortisol-secreting ATs also have increased concentrations of sex hormones. There is great interdog variability in sex hormone concentrations in dogs with ACA after stimulation with ACTH.  相似文献   

6.
OBJECTIVE: To assess thyroid hormone levels in hyperadrenocorticoid dogs before and after therapy with trilostane, a reversible inhibitor of steroidogenesis. METHODS: Serum total thyroxine, free thyroxine and endogenous canine thyroid-stimulating hormone concentrations were measured in 20 dogs with spontaneously occurring hyperadrenocorticism before and six months after successful treatment with trilostane. RESULTS: Fourteen dogs demonstrated an increase in thyroxine following trilostane treatment; however, this was not significant (P=0.108). Fourteen dogs demonstrated an increase in canine thyroid-stimulating hormone concentrations with trilostane therapy (P=0.006). Of the 14 dogs that demonstrated an increase in thyroxine concentrations following therapy, 10 also showed an increase in canine thyroid-stimulating hormone concentrations. Before treatment, free thyroxine values were within, above and below the reference range in 10, six and two dogs, respectively. Sixteen of 18 dogs had free thyroxine values within the reference range after treatment, with 11 dogs showing a decrease in free thyroxine levels following therapy (P=0.029). CLINICAL SIGNIFICANCE: While treatment with trilostane did not induce a significant change of thyroxine concentrations, there was a significant increase in canine thyroid-stimulating hormone concentrations following treatment, a finding that supports thyroid-stimulating hormone suppression as one of the factors that contributes to the effects of glucocorticoids on the hypothalamic-pituitary-thyroid axis. The significant elevation in free thyroxine values following treatment with trilostane was unexpected and did not support the findings of previous studies in this area.  相似文献   

7.
OBJECTIVE: To determine the efficacy of trilostane, a 3beta-hydroxysteroid dehydrogenase inhibitor, in dogs with pituitary-dependent hyperadrenocorticism (PDH). ANIMALS: 11 dogs with PDH. PROCEDURE: The initial dose of trilostane was 30 mg, PO, q 24 h for dogs that weighed < 5 kg and 60 mg, PO, q 24 h for dogs that weighed > or = 5 kg. A CBC count, serum biochemical analyses, urinalysis, ACTH stimulation test, and ultrasonographic evaluation of the adrenal glands were performed in each dog 1, 3 to 4, 6 to 7, 12 to 16, and 24 to 28 weeks after initiation of treatment. RESULTS: All dogs responded well to treatment. All had reductions in polyuria-polydipsia and panting and an increase in activity. Polyphagia decreased in 9 of 10 dogs, and 9 of 11 dogs had improvement of coat quality and skin condition. Concentration of cortisol after ACTH stimulation significantly decreased by 1 week after initiation of treatment. After treatment for 6 months, clinical signs resolved in 9 dogs. In the other 2 dogs, marked clinical improvement was reported for 1 dog, and moderate improvement was reported in the other dog. Ultrasonographically, there was a considerable change in the parenchyma and an increase in size of the adrenal glands. Adverse effects consisted of 1 dog with transient lethargy and 1 dog with anorexia. CONCLUSIONS AND CLINICAL RELEVANCE: Trilostane is an efficacious and safe medication for treatment of dogs with PDH. Additional studies in a larger group of dogs and characterization of progressive changes in adrenal glands are needed.  相似文献   

8.
The efficacy of trilostane in the treatment of canine pituitary-dependent hyperadrenocorticism (PDH) was evaluated in 78 dogs with the condition which were treated for up to three years. The drug appeared to be well tolerated by almost all the dogs, and only two developed clinical signs and biochemical evidence of hypoadrenocorticism. Polyuria and polydipsia completely resolved in 70 per cent of the dogs that had these problems, and skin changes resolved in 62 per cent of the dogs that had skin abnormalities. There was a significant reduction (P<0.001 in each case) in both the mean basal and post-adrenocorticotrophic hormone (ACTH) cortisol concentrations after a mean of 12.3 days of treatment. The post-ACTH cortisol concentration decreased to less than 250 nmol/litre in 81 per cent of the dogs within one month of the start of treatment and in another 15 per cent at some later time. The median survival time of the 26 dogs which died was 549 days, and 51 of the dogs were alive at the completion of the study. One was lost to follow up after 241 days treatment.  相似文献   

9.

Background

Trilostane is commonly used to treat pituitary‐dependent hyperadrenocorticism (PDH) in dogs. There are differing opinions regarding the dose and frequency of trilostane administration in dogs with PDH.

Objectives

To compare the efficacy of 2 trilostane protocols in the treatment of dogs with PDH.

Animals

Sixteen client‐owned dogs with PDH and a body weight <5 kg.

Methods

Prospective observational study. Group A (n=9; low‐dose treatment group) received 0.78 ± 0.26 mg of trilostane/kg PO every 12 h and group B (n = 7; high‐dose treatment group) 30 mg of trilostane/dog PO every 24 h. All of the dogs were reassessed at 2, 4, 8, 12, 16, and 24 weeks after the initiation of treatment.

Results

An improvement in both ACTH‐stimulated serum cortisol concentrations and clinical signs occurred more slowly in group A than in group B; however, after 20 weeks of treatment, 2/7 dog in group B had clinical signs and abnormal laboratory findings consistent with hypoadrenocorticism. At 24 weeks, an improvement in the clinical findings of all of the dogs in both groups was detected.

Conclusions and clinical importance

In dogs with PDH, twice‐daily administration of low‐dose trilostane is an effective approach to the management of PDH. In addition, our results suggest fewer potential adverse effects if trilostane is administered twice daily in the lower dose.  相似文献   

10.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

11.
The inhibitory effect of the somatostatin analogue octreotide on the secretion of insulin could be used in the treatment of insulinoma. However, current information on the effectiveness of octreotide in dogs is conflicting. Therefore, the endocrine effects of a single subcutaneous dose of 50 microg octreotide were studied in healthy dogs in the fasting state (n=7) and in dogs with insulinoma (n=12). Octreotide did not cause any adverse effects. In healthy dogs in the fasting state, both plasma insulin and glucagon concentrations declined significantly. Basal (non-pulse related) GH and ACTH concentrations were not affected. A slight but significant decrease in the plasma glucose concentrations occurred. Dogs with insulinoma had significantly higher baseline insulin concentrations and lower baseline glucose concentrations than healthy dogs in the fasting state. Plasma glucagon, GH, ACTH, and cortisol concentrations did not differ from those in healthy dogs. Baseline plasma insulin concentrations decreased significantly in dogs with insulinoma after octreotide administration, whereas plasma concentrations of glucagon, GH, ACTH, and cortisol did not change. In contrast to the effects in the healthy dogs, in the dogs with insulinoma plasma glucose concentrations increased. Thus, the consistent suppression of plasma insulin concentrations in dogs with insulinoma, in the absence of an suppressive effect on counter-regulatory hormones, suggests that further studies on the effectiveness of slow-release preparations in the long-term medical treatment of dogs with insulinoma are warranted.  相似文献   

12.
Several hormones regulate Na+, K+-ATPase content in the muscle cell membrane, which is essential for maintaining muscle cell excitability. Chronic glucocorticoid excess is associated with muscle weakness and reduced endurance. We hypothesized that chronic glucocorticoid excess affects Na+, K+-ATPase content in canine skeletal muscle, and contributes to reduced endurance and muscle weakness associated with pituitary-dependent hyperadrenocorticism (PDH) in dogs. Therefore, Na+, K+-ATPase content in skeletal muscle was evaluated before and after hypophysectomy and hormone replacement (cortisone and l-thyroxin) in dogs with PDH (n = 13), and in healthy controls (n = 6). In addition, baseline and exercise-induced changes in plasma electrolyte concentrations and acid–base balance were evaluated before and after hypophysectomy in dogs with PDH. Na+, K+-ATPase content of gluteal muscle in dogs with PDH was significantly lower than in control dogs (201 ± 13 pmol/g versus 260 ± 8 pmol/g wet weight; P < 0.01). Similar differences were found in palatine muscle. After hypophysectomy and on hormone replacement, Na+, K+-ATPase was increased (234 ± 7 pmol/g wet weight). Both plasma pH and base excess in dogs with PDH (7.44 ± 0.01; 1.7 ± 0.6 mmol/l, respectively) were significantly higher (P < 0.05) than after hypophysectomy and hormone replacement (7.41 ± 0.01; −0.2 ± 0.4 mmol/l, respectively). Exercise induced respiratory alkalosis, but did not result in hyperkalemia in dogs with PDH. In conclusion, chronic glucocorticoid excess in dogs with PDH is associated with decreased Na+, K+-ATPase content in skeletal muscle. This may contribute to reduce endurance in canine PDH, although dogs with PDH did not exhibit exercise-induced hyperkalemia. Na+, K+-ATPase content normalized to values statistically not different from healthy controls after hypophysectomy and hormone replacement.  相似文献   

13.
The serum concentrations of cortisol, 17alpha-hydroxypregnenolone, 17alpha-hydroxyprogesterone, 21-deoxycortisol and 11-deoxycortisol were measured in 19 healthy dogs, 15 dogs with pituitary-dependent hypercortisolism (pdh) and eight dogs with other diseases before and one hour after an injection of synthetic adrenocorticotrophic hormone (acth). At both times the dogs with pdh had significantly higher concentrations of cortisol, 17alpha-hydroxypregnenolone, 17alpha-hydroxyprogesterone and 21-deoxycortisol than the healthy dogs. Basal 11-deoxycortisol concentrations were also significantly higher in dogs with pdh compared with healthy dogs. When compared with the dogs with other diseases, the dogs with pdh had significantly higher basal and post-acth cortisol and basal 21-deoxycortisol, and significantly lower post-acth 11-deoxycortisol concentrations. The dogs with other diseases had significantly higher post-acth cortisol, 17alpha-hydroxyprogesterone and 11-deoxycortisol concentrations than the healthy dogs. In general, the post-acth concentrations of 17alpha-hydroxypregnenolone, 17alpha-hydroxyprogesterone, 11-deoxycortisol and 21-deoxycortisol were more variable than the post-acth concentrations of cortisol, resulting in large overlaps of the concentrations of these hormones between the three groups. A two-graph receiver operating characteristic (ROC) analysis was used to maximise the sensitivity and specificity of each hormone for diagnosing hypercortisolism; it showed that the post-acth concentration of cortisol had the highest sensitivity and specificity. The overlaps between the healthy dogs, the dogs with pdh and the dogs with other diseases suggested that the individual precursor hormones would not be useful as a screening test for hypercortisolism.  相似文献   

14.
The effect of orally administered ketoconazole on plasma cortisol concentration in dogs with hyperadrenocorticism was evaluated. Every 30 minutes from 0800 hours through 1600 hours and again at 1800 hours, 2000 hours, and 0800 hours the following morning, 15 clinically normal dogs and 49 dogs with hyperadrenocorticism had plasma samples obtained and analyzed for cortisol concentration. The mean (+/- SD) plasma cortisol concentration for the initial 8-hour testing period was highest in 18 dogs with adrenocortical tumor (5.3 +/- 1.6 micrograms/dl), lowest in 15 control dogs (1.3 +/- 0.5 micrograms/dl), and intermediate in 31 dogs with pituitary-dependent hyperadrenocorticism (PDH; 3.4 +/- 1.2 micrograms/dl). Results in each of the 2 groups of dogs with hyperadrenocorticism were significantly (P less than 0.05) different from results in control dogs, but not from each other. The same cortisol secretory experiment was performed, using 8 dogs with hyperadrenocorticism (5 with PDH; 3 with adrenocortical tumor) before and after administration at 0800 hours of 15 mg of ketoconazole/kg of body weight. Significant (P less than 0.05) decrease in the 8-hour mean plasma cortisol concentration (0.9 +/- 0.2 microgram/dl) was observed, with return to baseline plasma cortisol concentration 24 hours later. Twenty dogs with hyperadrenocorticism (11 with PDH, 9 with adrenocortical tumor) were treated with ketoconazole at a dosage of 15 mg/kg given every 12 hours for a half month to 12 months. The disease in 2 dogs with PDH failed to respond to treatment, but 18 dogs had complete resolution of clinical signs of hyperadrenocorticism and significant (P less than 0.05) reduction in plasma cortisol responsiveness to exogenous adrenocorticotropin (ACTH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Duration and magnitude of hypothalamic-pituitary-adrenal axis suppression caused by daily oral administration of a glucocorticoid was investigated, using an anti-inflammatory dose of prednisone. Twelve healthy adult male dogs were given prednisone orally for 35 days (0.55 mg/kg of body weight, q 12 h), and a control group of 6 dogs was given gelatin capsule vehicle. Plasma cortisol (baseline and 2-hour post-ACTH administration) and plasma ACTH and cortisol (baseline and 30-minutes post corticotropin-releasing hormone [CRH] administration) concentrations were monitored biweekly during and after the 35-day treatment period. Baseline plasma ACTH and cortisol and post-ACTH plasma cortisol concentrations were significantly (P less than 0.05) reduced in treated vs control dogs after 14 days of oral prednisone administration. By day 28, baseline ACTH and cortisol concentrations remained significantly (P less than 0.05) reduced and reserve function was markedly (P less than 0.0001) reduced as evidenced by mean post-CRH ACTH, post-CRH cortisol, and post-ACTH cortisol concentrations in treated vs control dogs. Two weeks after termination of daily prednisone administration, significant difference between group means was not evident in baseline ACTH or cortisol values, post-CRH ACTH or cortisol values, or post-ACTH cortisol values, compared with values in controls. Results indicate complete hypothalamic-pituitary-adrenal axis recovery 2 weeks after oral administration of an anti-inflammatory regimen of prednisone given daily for 5 weeks.  相似文献   

16.
Background: The adrenocorticotropic hormone (ACTH) stimulation test is used to evaluate trilostane treatment in dogs with hypercortisolism.
Hypothesis: The urinary corticoid : creatinine ratio (UCCR) is a good alternative to the ACTH stimulation test to determine optimal trilostane dose.
Animals: Eighteen dogs with pituitary-dependent hypercortisolism.
Methods: In this prospective study, the dose of trilostane was judged to be optimal on the basis of resolution of clinical signs of hypercortisolism and results of an ACTH stimulation test. The owners collected urine for determination of UCCR at 2-week intervals for at least 8 weeks after achieving the optimal trilostane dose.
Results: The UCCRs were significantly higher before treatment (11.5–202.0 × 10−6; median, 42.0 × 10−6) than at rechecks 2 months after optimal dosing, but they did not decrease below the upper limit of the reference range in the majority of dogs. The UCCRs of 11 dogs that initially were dosed insufficiently (range, 7.5–79.0 × 10−6; median, 31.0 × 10−6) did not differ significantly from UCCRs when the dosage was optimal (8.2–72.0 × 10−6; median, 33.0 × 10−6). Post-ACTH cortisol concentrations did not correlate significantly with UCCRs at rechecks during trilostane treatment. Long-term follow-up indicated that the decrease in UCCR below the upper limit of the reference was associated with hypocortisolism.
Conclusion and Clinical Importance: The UCCR cannot be used as an alternative to the ACTH stimulation test to determine the optimal dose of trilostane, but might be helpful in detecting dogs at risk for developing hypocortisolism during trilostane treatment.  相似文献   

17.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

18.
The mean (se) basal plasma aldosterone concentrations were significantly lower in 31 dogs with pituitary-dependent hyperadrenocorticism (PDH) (75 [9] pmol/litre) than in 12 healthy dogs (118 [14] pmol/litre), whereas in five dogs with hyperadrenocorticism due to an adrenocortical tumour they were significantly higher (205 [109] pmol/litre). The mean basal renin activity was not significantly different between the dogs with PDH (303 [48] fmol/litre/second), the dogs with an adrenocortical tumour (141 [63] fmol/litre/second), and the control dogs (201 [25] fmol/litre/second). At three and four hours after the intravenous administration of 0.1 mg/kg dexamethasone, the concentrations of aldosterone decreased significantly to about 60 per cent of their initial values in the control dogs but did not change in the dogs with PDH or an adrenocortical tumour. In the dogs with PDH the renin activity increased significantly after the administration of dexamethasone.  相似文献   

19.
The effects of trilostane, a 3beta-hydroxysteroid dehydrogenase inhibitor on basal cortisol concentrations and the results of ACTH stimulation tests in dogs with pituitary-dependent hyperadrenocorticism were investigated. In eight of nine dogs trilostane suppressed the concentration of cortisol below the lower limit of the reference range (<50 nmol/l) for a mean (sd) of 3.5 (2.3) hours during the day, but for no longer than 13 hours. In another 10 dogs, there was a clear difference between the post ACTH cortisol concentrations observed four and 24 hours after the administration of trilostane. Furthermore, in the six dogs whose clinical signs were poorly controlled the post-ACTH concentrations observed four and 24 hours after the administration of trilostane were always higher than the equivalent cortisol concentrations in the four dogs whose clinical signs were controlled. A short duration of drug action may be responsible for the failure of some dogs to respond adequately to once daily trilostane administration.  相似文献   

20.
OBJECTIVE: To evaluate the effects of twice-daily oral administration of a low-dose of trilostane treatment and assess the duration of effects after once-daily trilostane administration in dogs with naturally occurring hyperadrenocorticism (NOH). DESIGN: Prospective study. ANIMALS: 28 dogs with NOH. PROCEDURES: 22 dogs received 0.5 to 2.5 mg of trilostane/kg (0.23 to 1.14 mg/lb) orally every 12 hours initially. At intervals, dogs were reevaluated; owner assessment of treatment response was recorded. To assess drug effect duration, 16 of the 22 dogs and 6 additional dogs underwent 2 ACTH stimulation tests 3 to 4 hours and 8 to 9 hours after once-daily trilostane administration. RESULTS: After 1 to 2 weeks, mean trilostane dosage was 1.4 mg/kg (0.64 mg/lb) every 12 hours (n = 22 dogs; good response [resolution of signs], 8; poor response, 14). Four to 8 weeks later, mean dosage was 1.8 mg/kg (0.82 mg/lb) every 12 or 8 hours (n = 21 and 1 dogs, respectively; good response, 15; poor response, 5; 2 dogs were ill). Eight to 16 weeks after the second reevaluation, remaining dogs had good responses (mean dosages, 1.9 mg/kg [0.86 mg/lb], q 12 h [n = 13 dogs] and 1.3 mg/kg [0.59 mg/lb], q 8 h [3]). At 3 to 4 hours and 8 to 9 hours after once-daily dosing, mean post-ACTH stimulation serum cortisol concentrations were 2.60 and 8.09 Pg/dL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs with NOH, administration of trilostane at low doses every 12 hours was effective, although 2 dogs became ill during treatment. Drug effects diminished within 8 to 9 hours. Because of potential adverse effects, lower doses should be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号