首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorghum [Sorghum bicolor (L.) Moench] is a drought‐tolerant crop, and its productivity in rain fed environments has increased since the 1950s. This increase is due to changes in agronomic practices and hybrid improvement. The objective of this study was to determine what aspects of grain sorghum morphology, physiology and water use have changed with hybrid improvement and might have contributed to this yield increase. A 2‐year greenhouse experiment was conducted with one hybrid from each of the past five decades. The hybrids were studied in well‐watered and pre‐ and post‐flowering water deficit conditions. Total water use, transpiration, stomatal conductance and photosynthesis were measured during the growing period. Biomass and biomass components were measured at harvest. There was no consistent change in the leaf physiological parameters resulting from hybrid advancement. In contrast, total water use increased in rate of 8.5 cm3 kg soil?1 year?1 from old to new hybrids in the well‐watered treatments. Root biomass also increased in rate of 0.2 g plant?1 year?1. Leaf biomass and panicle length also was greater for the newest compared with the older hybrids. Hybrid advancement was related to increase in panicle length but decrease in peduncle length. Results indicated that hybrid development programmes created hybrids with improved drought avoidance, due to better root density of newly released hybrids, or hybrids with better resource use which ultimately increased yield under rain fed conditions.  相似文献   

2.
Low and erratic rainfall constitutes a major constraint to sorghum production, and impedes sorghum improvement in semi-arid tropics. To estimate quantitative-genetic parameters for sorghum under variable stress conditions, three sets of factorial crosses between four by four lines each were grown with parents and a local cultivar in eight macro-environments in semi-arid areas of Kenya. Fourteen traits were recorded including grain yield, above-ground drymatter, harvest index, days to anthesis, leaf rolling score, and stay-green. Environmental means for grain yield ranged from 167 to 595 g m-2. Mean hybrid superiority over mid-parent values was 47, 31, and 9% for grain yield, above-ground drymatter, and harvest index, respectively. Differences among both lines and hybrids were highly significant for all traits. Genotype × environment interaction variances were larger than genotypic variances for grain yield, above-ground drymatter, and harvest index. Corresponding heritabilities ranged between 0.72 and 0.84. Variation among hybrids was determined by GCA and SCA effects for most characters. Predominance of additive-genetic effects was found for grain yield components, plant height, and leaf rolling score. Lack of variation in GCA was noted among female lines for major performance traits. While low leaf rolling score was correlated with high grain yield, there was no such association for stay-green. Hybrid breeding could contribute to sorghum improvement for semi-arid areas of Kenya. To increase selection progress for major performance traits, genetic variation among female lines should be enhanced. Importance of genotype × environment interaction underlines the necessity of evaluating breeding materials under a broad range of dryland conditions.  相似文献   

3.
Maize (Zea mays L.) is an important staple food crop in West and Central Africa (WCA). However, its production is constrained by drought. Knowledge and understanding of the genetics of hybrid performance under drought is invaluable in designing breeding strategies for improving maize yield. One hundred and fifty hybrids obtained by crossing 30 inbreds in sets using the North Carolina Design II plus six checks were evaluated under drought and well‐watered conditions for 2 years at three locations in Nigeria. The objectives of the studies were to (i) determine the mode of gene action controlling grain yield and other important agronomic traits of selected early inbred lines, (ii) examine the relationship between per se performance of inbreds and their hybrids and (iii) identify appropriate testers for maize breeding programmes in WCA. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for grain yield and other traits under the research environments. The GCA accounted for 64.5 % and 62.3 % of the total variation for grain yield under drought and well‐watered conditions, indicating that additive gene action largely controlled the inheritance of grain yield of the hybrids. Narrow‐sense heritability was 67 % for grain yield under drought and 49 % under well‐watered conditions. The correlations between traits of early‐maturing parental lines and their hybrids were significant (P < 0.01) under drought, well‐watered and across environments. Mid‐parent and better‐parent heterosis for grain yield were 45.3 % and 18.4 % under drought stress and 111.9 % and 102.6 % under well‐watered conditions. Inbreds TZEI 31, TZEI 17, TZEI 129 and TZEI 157 were identified as the best testers. Drought‐tolerant hybrids with superior performance under stress and non‐stress conditions could be obtained through the accumulation of favourable alleles for drought tolerance in both parental lines.  相似文献   

4.
Introduced maize (Zea mays L.) germplasm can serve as sources of favorable alleles to enhance performance in new maize varieties and hybrids under drought stress conditions. In the present study, the combining abilities of 12 exotic maize inbred lines from CIMMYT and 12 adapted maize inbred lines from IITA were studied for grain yield and other traits under controlled drought stress. The inbred lines from each institution were separated into groups using SSR-based genetic diversity and were intercrossed using a factorial mating scheme to generate 96 hybrids. These hybrids were evaluated under both controlled drought stress and well-watered conditions at Ikenne in Nigeria in 2010 and 2011. Average mean yields of hybrids under drought stress represented 23 % of the average yield of hybrids under full irrigation. General combining ability (GCA) effects accounted for 49–85 % of the observed variation for several traits recorded under both well-watered and drought stress conditions. Specific combining ability effects for grain yield, though positive in most hybrids, were not significant under drought stress conditions. All the twelve exotic and nine adapted lines had positive GCA effects (female, male, or both) for grain yield under either drought stress or full irrigation, or both environments. EXL03 and EXL15 that had positive and significant female and male GCA effects for grain yield under both environments can be used to improve their adapted counterparts for grain yield and drought tolerance. Normalized difference vegetation index had weak but significant correlation with grain yield.  相似文献   

5.
Little is known of the relationship between hybrids and parental material with respect to water use and drought resistance. Responses of sorghum (Sorghum bicolor [L.] Moench) F1 hybrids to moisture deficits are partially determined by parental material. The yield and water use of six sorghum hybrids and their respective male and female parents were evaluated under stressed and well irrigated conditions during 1980 and 1981 at Tucson, Arizona. The soil was Comoro loamy sand (coarse-loamy, mixed, calcareous, thermic typic Torrifluvent) with an average available soil moisture of 16 % at field capacity. Changes in soil moisture were monitored semi-weekly by neutron modulation. Meteorological data were collected daily. The 1980 season had higher maximum temperatures and pan evaporation than the 1981 season. Differences in cumulative water use among entries were apparent within the same water treatments during 1981. Mean cumulative evapotranspiration (ET) for the stressed treatment was 248 and 281 mm for 1980 and 1981, respectively, and ET under well irrigated conditions was 419 and 528 mm for 1980 and 1981, respectively. Hybrids produced greater grain yield than their parents under both water treatments. This was due to greater seed number for hybrids. Seed numbers were more stable for hybrids over both treatments than for parents. Hybrids four and seven had the greatest grain yield in 1980 and 1981, respectively, under stressed conditions. Water use efficiency (WUE) was significantly different within water treatments but was not so between the irrigated and stressed treatments. Hybrids WUE was generally greater than that of parents except for hybrid five under irrigated conditions in 1981. Hybrids with WUE and stable yields were not necessarily reflective of parental material under stressed and non-stressed environments.  相似文献   

6.
Specialty food markets are continually interested in food grains with unique attributes and qualities. The objective of this study was to evaluate the relative effects of genotype and environment on the agronomic performance of six black grain sorghum hybrids developed to produce high concentrations of total phenols, condensed tannins and 3-deoxyanthocyanin. These hybrids and a commercial grain sorghum check were evaluated in six Texas environments (three locations and two years). Significant effects due to genotype and environment were detected. Interaction between genotype and environment were also detected but they were smaller in magnitude than the main effects. Compared to the commercial check, the black sorghum hybrids had significantly higher concentrations of phenols, tannins and 3-deoxyanthocyanins across all environments but the grain yield of the best hybrid was only 78 % that of the commercial check. Heterosis for grain yield was detected but phenol, tannin and 3-deoxyanthocyanin concentration did not express high parent heterosis. The results indicate that higher yield is possible in black sorghum hybrids and selection should be effective in improving concentrations of phenols, tannins and 3-deoxyanthocyanin.  相似文献   

7.
In drought‐prone environments, sweet sorghum and sorghum‐sudangrass hybrids are considered worthy alternatives to maize for biogas production. The biomass productivity of the three crops was compared by growing them side‐by‐side in a rain‐out shelter under different levels of plant available soil water (PASW) during the growing periods of 2008 to 2010 at Braunschweig, Germany. All crops were established under high levels of soil water. Thereafter, the crops either remained at the wet level (60–80 % PASW) or were subjected to moderate (40–50 % PASW) and severe drought stress (15–25 % PASW). While the above‐ground dry weight (ADW) of sweet sorghum and maize was insignificantly different under well‐watered conditions, sweet sorghum under severe drought stress produced 27 % more ADW than maize. The ADW of sorghum‐sudangrass hybrids significantly lagged behind sweet sorghum at all levels of water supply. The three crops differed markedly in their susceptibility to water shortage. Severe drought stress reduced the ADW of maize by 51 %, but only by 37 % for sweet sorghum and 35 % for sorghum‐sudangrass hybrids. The post‐harvest root dry weight (RDW) in the 0–100 cm soil layer for maize, sweet sorghum and sorghum‐sudangrass hybrids averaged 4.4, 6.1 and 2.9 t ha?1 under wet and 1.9, 5.7 and 2.4 t ha?1 under severe drought stress. Under these most dry conditions, the sorghum crops had relatively higher RDW and root length density (RLD) in the deeper soil layers than maize. The subsoil RDW proportion (20–100 vs. 0–20 cm) for maize, sweet sorghum and sorghum‐sudangrass hybrids amounted to 6 %, 10 % and 20 %. The higher ADM of sweet sorghum compared with maize under dry conditions is most likely attributable to the deep root penetration and high proportion of roots in the subsoil, which confers the sorghum crop a high water uptake capacity.  相似文献   

8.
Summary Throughout much of the semi-arid tropics, fluctuations in grain yield can largely be attributed to differences in timing and intensity of drought stress. Since seasonal rainfall in these environments is often poorly related to grain yield, the aim of this paper was to establish a relationship between water availability and grain yield for pearl millet (Pennisetum glaucum (L.) R. Br.), grown across 24 semi-arid tropical environments in India. We used a simple soil water budget to calculate a water satisfaction index (WSI) throughout the season. The cumulative WSI at maturity explained 76% of the variance in grain yield. This was three times as much as explained by actual rainfall, because WSI accounted for differences in water losses and pan evaporation. A classification of environments into four groups of water availability patterns explained 75% of the environmental sum of squares for grain yield. For a subset of 13 environments, environmental differences in grain number could also be explained by water availability patterns, whereas differences in grain mass were related to both water availability and temperature. Our results indicate that cumulative WSI, which is an integrated measure of plant-available water, can provide an adequate estimation of the environmental potential for yield in environments where grain yield is mainly limited by variable availability of water.ICRISAT Journal Article 1637  相似文献   

9.
Sorghum midge, Stenodiplosis sorghicola (Coquillett) is one of the most important pests of grain sorghum worldwide. We studied the inheritance of resistance to sorghum midge and compensation in grain weight and volume in panicles of sorghum hybrids and their parents under uniform infestation (40 midges per panicle for two consecutive days). Sorghum midge damage ranged from 8.2 to 82.4% in the maintainer lines (B-lines) of the females parents (A-lines), and 9.0 to 67% in the male parents (restorer lines). Hybrids involving resistant × resistant parents were highly resistant, while those involving resistant ×susceptible and susceptible × resistant parents showed moderate susceptibility. Susceptible × susceptible hybrids were susceptible. Compensation in (percentage increase) grain weight and volume in midge-infested panicles of midge-resistant parents and their F1 hybrids was greater than in midge-susceptible parents and hybrids. General combining ability effects for midge damage, and grain weight and volume were significant and negative for the midge-resistant females (ICSA 88019 and ICSA 88020), whereas those for the midge-susceptible females (ICSA 42 and 296A) were significant and positive. However, the reverse was true in case of compensation in grain weight and volume. Inheritance of compensation in grain weight and volume and resistance to sorghum midge is controlled by quantitative gene action with some cytoplasmic effects. Resistance is needed in both parents to realize full potential of midge-resistant hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In contrast to conventional inbreeding that takes up to seven generations to develop inbred lines, the doubled haploid (DH) technology allows production of inbred lines in two generations. The objectives of the present study were to: (a) evaluate testcross performance of 45 doubled haploid lines under drought stress and non-stress conditions (b) estimate heritabilities for grain yield and other traits and (c) to assess the genetic distance and relationship among the DH lines using 163,080 SNPs generated using genotyping-by-sequencing (GBS). The 45 hybrid and five checks were evaluated using a 10 × 5 alpha lattice in six drought stress and nine well-watered environments in Kenya, Uganda, and Tanzania. Differences in trait means between the drought stress and well-watered conditions were significant for all measured traits except for anthesis date. Genetic variances for grain yield, grain moisture, plant height and ear height were high under well-watered environments while genetic variance for anthesis date, root lodging and stalk lodging were high under drought stress environments. Combined analyses across drought stress and well-watered environments showed that ten top hybrids produced 1.6–2.2 t/ha grain yield under well-watered condition and 1–1.4 t/ha under drought stress condition higher than the mean of the commercial checks. Genetic distance between pairwise comparisons of the 38 of the 45 DH lines ranged from 0.07 to 0.48, and the overall average distance was 0.36. Both cluster and principal coordinate analysis using the genetic distance matrix calculated from 163,080 SNPs showed two major groups and the patterns of group was in agreement with their pedigree. Thirteen (13) of the best hybrids are currently in National Performance Trials testing, an important step towards commercialization in Kenya, Tanzania and Uganda.  相似文献   

11.
This study quantified the magnitude of heterosis in pearl millet (Pennisetum glaucum) topcross hybrids produced by crossing 16 diverse landraces and three high yielding open-pollinating varieties on two homozygous male-sterile lines. Hybrids and pollinators were grown in 12 year ×;location combinations in India that were grouped into three zones. Genetic components of variance quantifying the differences among these hybrids were estimated. The hybrids showed a conspicuous heterosis for grain yield, earliness and biomass yield but not for straw yield. The level and direction of heterosis for time to flowering depended strongly on the earliness of the male-sterile line. In the terminal drought stress zone hybrids made on the early maturing male-sterile line 843A had the highest level of heterosis for grain yield (88%). This was partly due to escape from terminal stress. In the other two zones the heterosis for grain yield was on average 30%. Heterosis for biomass yield and biomass yield per day was on average also positive in all three zones. For all traits, except time to flowering and biomass yield per day, pollinator effects were the only significant source of variation. Differences between hybrids were mostly caused by additive genetic effects. Significant amount of heterosis observed in landrace-based topcross hybrids for grain yield and other productivity-related traits suggested that substantial improvement in pearl millet productivity in and environments can be obtained by topcrossing locally adapted landraces on suitable male-sterile lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Genotype × environment (GE) interactions are a major problem in plant breeding programs that involve testing in diverse environments. These interactions can reduce progress from selection. Few studies have characterized the effects of weather variables on GE interactions in sorghum (Sorghum bicolor [L.] Moench). The present investigation estimated the contribution of environmental index, (?, or mean yield of all cultivars in jth environment minus ?. xor overall mean yield for all cultivars and all environments), rainfall, minimum and maximum temperature, and relative humidity, to GE interaction. Yield means of 5 full-season and 10 medium-season grain sorghum hybrids grown during 1986—1988 at four locations were used in the study. The GE interaction was significant and partitioned into σ2i, components assignable to each genotype. Weather variables (covariates) were used to remove heterogeneity from the GE interaction. The remainder of the GE interaction variance was partitioned into variance components (s2i) assignable to each genotype. In both maturity groups, the environmental index removed most, although non-significant, heterogeneity from the GE interaction sums of squares. Of all weather variables, preseason and seasonal rainfall contributed most to the GE interaction sums of squares.  相似文献   

13.
Sorghum [(Sorghum bicolor L.) Moench] is a highly productive crop plant, which can be used for alternative energy resource, human food, livestock feed or industrial purposes. The biomass of sorghum can be utilized as solid fuel via thermochemical routes or as a carbohydrate substrate via fermentation processes. The plant has a great adaptation potential to drought, high salinity and high temperature, which are important characteristics of genotypes growing in extreme environments. However, the climate change in the 21st century may bring about new challenges in the cultivated areas. In this review, we summarize the most recent literature about the responses of sorghum to the most important abiotic stresses: nutrient deficiency, aluminium stress, drought, high salinity, waterlogging or temperature stress the plants have to cope with during cultivation. The advanced molecular and system biological tools provide new opportunities for breeders to select stress‐tolerant and high‐yielding cultivars.  相似文献   

14.
Identification of hybrids for commercialization is crucial for sustainable maize production in sub-Saharan Africa (SSA). One hundred and ninety test crosses, 10 tester × tester crosses + 10 hybrid checks were evaluated across 11 environments, 2017 to 2019. Inheritance of grain yield under Striga infestation, optimal and across environments was influenced by additive genetic action, but there was greater influence of nonadditive gene action under drought stress conditions. Nine, seven and two inbreds had significant and positive general combining ability (GCA) effects for grain yield under Striga-infested, optimal and drought stress environments, respectively, and would contribute high grain yield to their progenies. Heterotic grouping methods based on specific and GCA, GCA effects of multiple traits and DArTseq markers classified the inbreds into five, three and two heterotic groups, respectively, across research conditions. The DArTseq markers method that classified the inbred lines into two major heterotic groups and was one of the most efficient methods should be adopted for practical purposes in maize breeding programmes in SSA. Hybrids TZEI 7 × TZdEI 352, TZEI 1238 × TZEI 7 and TZEI 1252 × TZEI 7 had outstanding grain yield under contrasting environments and should be tested on-farm for commercialization in SSA.  相似文献   

15.
Drought tolerance in sorghum by pollen selection using osmotic stress   总被引:2,自引:0,他引:2  
A pollen selection study for drought tolerance using Poly Ethylene Glycol (PEG) as a selective agent was conducted in sorghum. Ten genotypes of sorghum suitable for post rainy season were crossed to cytoplasmic male sterile line 104A and three genotypes to 116A producing 13 hybrids. Two sets of 13 hybrids with and without pollen selection were produced. PEG at 36 per cent was applied to stigma and stylar tissue one hour before pollination for pollen selection (selective fertilization) and no treatment for control (nonselective fertilization). Hybrids thus produced through selective and non-selective fertilization were tested in moisture stress environment during post rainy season. The hybrids obtained through selective fertilization produced significantly higher mean grain yield compared to hybrids obtained through non-selective fertilization. The results indicate that selective fertilization through in vivo pollen selection using PEG as selective agent was effective in improving moisture stress tolerance of the progeny in sorghum genotypes studied. Further, the pollen selection also had influence on plant height, panicle length, panicle width, panicle weight and grain mass. Thus,the pollen selection had a significant effect on grain yield through its components and developmentally related traits. Pollen selection for osmoticstress tolerance in sorghum influences the growth and vigour of the plants resulting in superior progeny in moisture stress environment. The analysis of individual crosses indicated that pollen genotype selection was able to favour performance of the progeny. However, the pollen selection had positive effect in majority of the hybrids and the study demonstrates the transmission of the selected trait from pollen generation to progeny. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Intercropping represents an alternative to maize (Zea mays L.) monoculture to provide substrate for agricultural biogas production. Maize was intercropped with either sunflower (Helianthus annuus L.) or forage sorghum [Sorghum bicolor (L.) Moench] to determine the effect of seasonal water supply on yield and quality of the above‐ground biomass as a fermentation substrate. The two intercrop partners were grown in alternating double rows at plant available soil water levels of 60–80 %, 40–50 % and 15–30 % under a foil tunnel during the years 2006 and 2007 at Braunschweig, Germany. Although the intercrop dry matter yields in each year increased with increasing soil moisture, the partner crops responded quite differently. While maize produced significantly greater biomass under high rather than low water supply in each year, forage sorghum exhibited a significant yield response only in 2006, and sunflower in none of the 2 years. Despite greatly different soil moisture contents, the contribution of sorghum to the intercrop dry matter yield was similar, averaging 43 % in 2006 and 40 % in 2007. Under conditions of moderate and no drought stress, sunflower had a dry matter yield proportion of roughly one‐third in both years. In the severe drought treatment, however, sunflower contributed 37 % in 2006 and 54 % in 2007 to the total intercrop dry matter yield. The comparatively good performance of sunflower under conditions of low water supply is attributable to a fast early growth, which allows this crop to exploit the residual winter soil moisture. While the calculated methane‐producing potential of the maize/sorghum intercrop was not affected by the level of water supply, the maize/sunflower intercrop in 2006 had a higher theoretically attainable specific methane yield under low and medium than under high water supply. Nevertheless, the effect of water regime on substrate composition within the intercrops was small in comparison with the large differences between the intercrops.  相似文献   

17.
A large-effect QTL for grain yield under drought conditions (qtl12.1) was reported in a rice mapping population derived from Vandana and Way Rarem. Here, we measured the effect of qtl12.1 on grain yield and associated traits in 21 field trials: ten at IRRI in the Philippines and 11 in the target environment of eastern India. The relative effect of the QTL on grain yield increased with increasing intensity of drought stress, from having no effect under well-watered conditions to having an additive effect of more than 40% of the trial mean in the most severe stress treatments. The QTL improved grain yield in nine out of ten direct-seeded upland trials where drought stress was severe or moderate, but no effect was measured under well-watered aerobic conditions or under transplanted lowland conditions. These trials confirm that qtl12.1 has a large and consistent effect on grain yield under upland drought stress conditions, in a wide range of environments.  相似文献   

18.
Development of hybrids is considered to be a promising avenue to enhance the yield potential of crops. We investigated (i) the amount of heterosis observed in hybrid progeny, (ii) relative importance of general (GCA) versus specific (SCA) combining ability, and (iii) the relationship between heterosis and genetic distance measures in four agronomic traits of spring bread wheat. Eight male and 14 female lines, as well as 112 hybrids produced in a factorial design were grown in replicated trials at two environments in Mexico. Principal coordinate analysis based on Rogers' distance (RD) estimates calculated from 113 SSRs revealed three different groups of parents. Mid-parent heterosis (MPH) for grain yield averaged 0.02 t ha−1 (0.5%) and varied from −15.33% to 14.13%. MPH and hybrid performance (F1P) were higher for intra-group hybrids than for inter-group hybrids, with low values observed in inter-group crosses involving two non-adapted Chinese parents. Combined analyses of variance revealed significant differences among parents and among hybrids. Estimates of GCA variances were more important than SCA variances for all traits. Tight correlations of GCA with line per se performance, and mid-parent value with F1P were observed for all traits. In contrast, correlations of MPH with RD and coefficient of parentage were not significant. It was concluded that the level of heterosis in spring wheat was too low to warrant a commercial exploitation in hybrids. SSRs proved to be a powerful tool for the identification of divergent groups in advanced wheat breeding materials.  相似文献   

19.
本研究以高粱吉杂305和吉杂127为试验材料,研究苗期和灌浆期干旱-复水过程对高粱光合特性和物质生产的影响。结果表明,在苗期和灌浆期干旱胁迫下,2个高粱品种的光合作用受到了明显的抑制,其中净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、最大光化学效率(Fv/Fm)、光化学淬灭系数(qP)、电子传递效率(ETR)和相对叶绿素含量(SPAD值)均出现了不同程度的下降,且吉杂305降幅低于吉杂127,而干旱使初始荧光(Fo)升高,且吉杂127升高幅度较大。2个时期干旱-复水后,吉杂305光合指标均有所恢复且与对照比较差异不显著,而吉杂127恢复程度有限,除苗期Pn、Ci,灌浆期Gs等指标外,其余光合指标与对照比较差异显著。经历2个时期干旱-复水导致高粱各器官的干物质量、单株子粒产量、单株生物产量和收获指数降低,吉杂127各产量指标的降幅均高于吉杂305,抗旱指数较低。  相似文献   

20.
Sorghum (Sorghum bicolor L. Moench) is regarded a drought‐tolerant alternative to maize as a bioenergy and fodder crop, but its early‐stage chilling sensitivity is obstructing a successful implementation in temperate areas. While several studies have identified quantitative trait loci (QTL) underlying chilling tolerance‐related traits in sorghum lines, little is known about the inheritance of these traits in F1 hybrids. We have conducted a comprehensive approach to analyse heterosis, combining ability and the relation between line per se and hybrid performance for emergence and early shoot and root development comprising both field trials and controlled environment experiments including chilling tests. To our best knowledge, this is the first study analysing heterosis for sorghum root parameters under chilling. Our results show that most traits are heterotic and that the mid‐parent values are rather poor predictors of hybrid performance. Hybrid breeding programmes should focus on efficient GCA tests and the establishment of genetically diverse pools to maximise heterosis rather than on a too strict selection among lines based on their per se performance. The medium‐to‐high heritabilities estimated for seedling emergence and juvenile biomass suggest that a robust breeding progress for these complex traits is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号