首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant roots are generally considered to decompose slower than shoots and contribute more to accumulation of soil organic matter, and management history is expected to shape the structure and function of decomposer communities in soil. Here we study the effect of chemical characteristics of shoots and roots from fodder radish (Raphanus sativus oleiformis L.), a widely used cover crop, on the release of their C and N after addition to soil. Shoots and roots were incubated for 180?d at 20°C using four soils with different management histories (organic versus mineral fertiliser, with and without use of cover crops), and the release of CO2 and extractable mineral N was determined. More shoot C than root C was mineralised during the first 10?d of incubation. After 180?d, 58% of the C input was mineralised with no difference between shoots and roots. At the end of incubation, shoots had released more N (42% of shoot N) than roots (28% of root N). Moreover, management history did not affect net mineralisation of added plant C. Residues incubated in soil with a management history involving cover crops showed an enhanced net N mineralisation. Therefore, long-term decomposition of C added in radish shoots and roots is unaffected by differences in chemical characteristics or soil management history. However, the net mineralisation of N in shoots is faster than for N in roots, and net N mineralisation of added materials is higher in soil with than without a history of cover crops.

Abbreviations: CC: cover crop; IF: inorganic fertilizer; M: manure  相似文献   

2.
In a mesocosm experiment, we studied decomposition rates as CO2 efflux and changes in plant mass, nutrient accumulation and soil pools of nitrogen (N) and phosphorus (P), in soils from a sub-arctic heath. The soil was incubated at 10 °C and 12 °C, with or without leaf litter and with or without plants present. The purpose of the experiment was to analyse decomposition and nutrient transformations under simulated, realistic conditions in a future warmer Arctic.Both temperature enhancement and litter addition increased respiration rates. Temperature enhancement and surprisingly also litter addition decreased microbial biomass carbon (C) content, resulting in a pronounced increase of specific respiration. Microbial P content increased progressively with temperature enhancement and litter addition, concomitant with increasing P mineralisation, whereas microbial N increased only in the litter treatment, at the same time as net N mineralisation decreased. In contrast, microbial biomass N decreased as temperature increased, resulting in a high mobilisation of inorganic N.Plant responses were closely coupled to the balance of microbial mineralisation and immobilisation. Plant growth and N accumulation was low after litter addition because of high N immobilisation in microbes and low net mineralisation, resulting in plant N limitation. Growth increased in the temperature-enhanced treatments, but was eventually limited by low supply of P, reflected in a low plant P concentration and high N-to-P ratio. Hence, the different microbial responses caused plant N limitation after litter addition and P limitation after temperature enhancement. Although microbial processes determined the main responses in plants, the plants themselves influenced nutrient turnover. With plants present, P mobilisation to the plant plus soil inorganic pools increased significantly, and N mobilisation non-significantly, when litter was added. This was presumably due to increased mineralisation in the rhizosphere, or because the nutrients in addition to being immobilised by microbes also could be absorbed by plants. This suggests that the common method of measuring nutrient mineralisation in soils incubated without plants may underestimate the rates of nutrient mobilisation, which probably contributes to a commonly observed discrepancy of measured lower rates of net nutrient mineralisation than uptake rates in arctic soils.  相似文献   

3.
Nitrogen (N) and carbon (C) mineralisation are triggered by pulses of water availability in arid and semi-arid systems. Intermittent streams and their associated riparian communities are obvious ‘hot spots’ for biogeochemical processes in arid landscapes where water and often C are limiting. Stream landscapes are characterized by highly heterogeneous soils that may respond variably to rewetting. We used a laboratory incubation to quantify how N and C mineralisation in rewetted soils and sediments from an intermittent stream in the semi-arid Pilbara region of north-west Australia varied with saturation level and substrate addition (as ground Eucalyptus litter). Full (100%) saturation was defined as the maximum gravimetric moisture content (%) achieved in free-draining soils and sediments after rewetting, with 50% saturation defined as half this value. We estimated rates and amounts of N mineralised from changes in inorganic N and microbial respiration as CO2 efflux throughout the incubation. In soils and sediments subject to 50% saturation, >90% of N mineralised accumulated within the first 7 d of incubation, compared to only 48% when soils were fully saturated (100% saturation). Mineralisation rates and microbial respiration were similar in riparian and floodplain soils, and channel sediments. N mineralisation rates in litter-amended soils and sediments (0.73 mg N kg−1 d−1) were only one-third that of unamended samples (3.04 mg N kg−1 d−1), while cumulative microbial respiration was doubled in litter-amended soils, suggesting N was more rapidly immobilized. Landscape position was less important in controlling microbial activity than soil saturation when water-filled pore space (% WFPS) was greater than 40%. Our results suggest that large pulses of water availability resulting in full soil saturation cause a slower release of mineralisation products, compared to small pulse events that stimulate a rapid cycle of C and N mineralisation-immobilization.  相似文献   

4.
为评价沼液作为堆肥含氮添加剂的应用效果,开发沼液的处理应用技术,以牛粪树叶堆肥为对照,将沼液和树叶混合堆制发酵,探讨其发酵特性与腐熟进程。研究结果表明,环境温度一直在10℃以下,沼液堆肥化和牛粪堆肥化均能经历35d以上的堆温超过50℃的高温发酵;而沼液堆肥化超过50℃的高温期持续时间比牛粪堆肥化少8d;经60d的发酵沼液堆肥化的半纤维素含量从发酵初期的12.14%下降到6.53%,纤维素含量由20.5%下降到9.8%;而牛粪堆肥化的半纤维素含量从12.8%下降到9.56%,纤维素含量由21.5%下降到15.9%。可见沼液堆肥化的分解更彻底。从C/N、温度、可溶性糖含量、含水量、种子发芽指数综合评价两种堆肥的腐熟度,沼液堆肥化进入腐熟状态约经30d,而牛粪堆肥化进入腐熟约需45d。  相似文献   

5.
Animal slurry can be separated into solid and liquid manure fractions to facilitate the transport of nutrients from livestock farms. In Denmark, untreated slurry is normally applied in spring whereas the solid fraction may be applied in autumn, causing increased risk of nitrate and phosphorus (P) leaching. We studied the leaching of nitrate and P in lysimeters with winter wheat crops (Triticum aestivum L.) after autumn incorporation versus spring surface application of solid manure fractions, and we compared also spring applications of mineral N fertilizer and pig slurry. Leaching was compared on a loamy sand and a sandy loam soil. The leaching experiment lasted for 2 yr, and the whole experiment was replicated twice. Nitrate leaching was generally low (19–34 kg N/ha) after spring applications of mineral fertilizer and manures. Nitrate leaching increased significantly after autumn application of the solid manures, and the extra nitrate leached was equivalent to 23–35% of total manure N and corresponded to the ammonium content of the manures. After spring application of solid manures and pig slurry, only a slight rise in N leaching was observed during the following autumn/winter (<5% of total manure N). Total P leaching was 40–165 g P/ha/yr, and the application of solid manure in autumn did not increase P leaching. The nitrogen fertilizer replacement value of solid manure N was similar after autumn and spring application (17–32% of total N). We conclude that from an environmental perspective, solid manure fractions should not be applied to winter wheat on sandy and sandy loam soils under humid North European conditions.  相似文献   

6.
The mineralisation of green manure from agroforestry trees was monitored with the objective to compare the temporal dynamics of mineralisation of litter from different species. Green manures from five agroforestry tree species were used on a fallow field during the long rainy season of 1997 (March-August) and from two species in the following short rainy season (September-January) in western Kenya. Different methods, i.e. measurements of isotopic ratios of C in respired CO2 and of soil organic matter (SOM) fractions, soil inorganic N and mass loss from litterbags, were used in the field to study decomposition and C and N mineralisation. Soil respiration, with the separation of added C from old soil C by using the isotopic ratio of 13C/12C in the respired CO2, correlated well with extractable NH4+ in the soil. Mineralisation was high and very rapid from residues of Sesbania sesban of high quality [e.g. low ratio of (polyphenol+lignin)/N] and low and slow from low quality residues of Grevillea robusta. Ten days after application, 37% and 8% of the added C had been respired from Sesbania and Grevillea, respectively. Apparently, as much as 70-90% of the added C was respired in 40 days from high quality green manure. Weight losses of around 80%, from high quality residues in litterbags, also indicate substantial C losses and that a build-up of SOM is unlikely. For immediate effects on soil fertility, application of high quality green manure may, however, be a viable management option. To achieve synchrony with crop demand, caution is needed in management as large amounts of N are mineralised within a few days after application.  相似文献   

7.
Soil organic matter (SOM) is the dominant store of nutrients required for plant growth, but the availability of these nutrients is dependent on transformations mediated by the microbial biomass. The addition of labile C to soil is known to alter SOM turnover (priming effect, PE), but understanding of this is limited, particularly with respect to impact on gross nitrogen (N) fluxes. Here we examined relationships between C and N fluxes from SOM under primed and non-primed conditions in two soils. Stable isotopes (13C and 15N) were used to measure gross C and N fluxes from SOM and to differentiate between SOM mineralised due to priming and that from basal mineralisation. 13C-glucose was added daily to simulate the effect of addition of labile C on SOM-C and –N mineralisation within the rhizosphere. Addition of glucose increased both gross N and C mineralisation from SOM. However, the C-to-N ratio of the mineralised flux from ‘primed’ SOM was 5:1, whereas the C-to-N ratio of the basal mineralised flux was 20:1 indicating that priming acted on specific organic matter pools. This result is consistent with the concept that priming is a distinct N-mining response of the microbial biomass, as opposed to an acceleration of the basal flux. Our data suggest that C and N fluxes are not directly linked through their gross stoichiometry in SOM. This is due to the heterogeneity and overall passiveness of OM relative to the dynamic nature of mineralisation fluxes and source pools, and in primed systems the mineralisation of N-rich compounds.  相似文献   

8.
The bioconversion of vineyard pruning and grape pomace by Pleurotus spp. using a solid state fermentation (SSF) was evaluated. Fruiting body production and chemical changes in the substrates after harvesting were measured. Biological efficiency and bioconversion ranged from 37.2 to 78.7% and from 16.7 to 38.8%, respectively. The best substrates for mycelial growth and mushroom yield were the mixtures with higher vineyard pruning content. Inclusion of pruning content had higher phenolic components and total sugars, better C/N ratio, and lower crude fat and total nitrogen than pomace. On the contrary, mycelium grew more slowly and scarcely in all treatments with 100% grape pomace. Moisture, protein, fat, and lignin contents were generally higher in mixtures with higher pomace proportion, whereas neutral detergent fiber, hemicellulose, and cellulose contents were higher with pruning content. Pleurotus strains may act depending on the availability of fiber fractions of substrate, and dynamic changes in digestion might occur as these fractions change during fungal growth. The recycling of viticulture residues through SSF by Pleurotus has great potential to produce human food and yields an available high-fiber feed for limited use in ruminants.  相似文献   

9.
城市污泥与调理剂混合堆肥过程中有机质组分的变化   总被引:5,自引:4,他引:1  
【目的】研究城市污泥堆肥过程中各项有机质组分及碳、 氮在堆肥过程中的形成与转化,以期改善堆肥的生物有效性,促进其土地利用。【方法】在工厂规模化下,以城市污泥、 蘑菇渣锯末以及返混料按照6∶3∶1的质量比混合形成堆肥物料,辅以强制通风措施和翻抛,进行为期18 d的高温堆肥试验。堆肥期间定期采样,测定指标包括温度、 C/N值、 pH、 含水率、 有机质降解率、 水溶性组分、 半纤维素、 纤维素和木质素,研究堆肥期间不同阶段堆肥物料中有机质组分的动态变化。【结果】堆体温度随着发酵时间的延长呈现先升高后降低的趋势,最高温度达到71.3℃; 含水率由60.7%降低到51.4%,pH呈现先升高后降低的趋势,总体处于6.0~7.5之间; 总有机碳含量持续下降,氮素含量表现为高温期持续下降随后呈上升的趋势; 初始阶段,堆肥物料中四种成分含量分布为: 水溶性组分纤维素半纤维素木质素,至堆肥结束变化为: 纤维素水溶性组分木质素半纤维素,经过堆肥之后水溶性组分及半纤维素含量分别由39.5%和20.1%下降为27.9%和14.4%,纤维素含量由初始的21.8%上升至29.5%,木质素含量相对稳定不变。物料经过堆肥化处理后达到腐熟标准,水溶性组分和半纤维素含量分别降低了38.6%和38.8%,纤维素和木质素含量在高温期分别降解了11.7%和18.5%; 物料总量降低了9.8%。水溶性组分的主要降解阶段为高温期,期间降解部分占总降解量的65.5%; 半纤维素的主要降解阶段为稳定期,稳定期降解部分占总降解量的69.1%,且有继续降解的趋势; 纤维素和木质素仅在高温期有少量降解; 氮素则表现为高温期铵态氮的损失及稳定期硝态氮的积累。【结论】堆肥化处理在实现污泥减量化基础上,污泥中有机质得到了稳定化,有利于城市污泥的土地利用。  相似文献   

10.
The rates of sulphur (S) released to and removed from the soil inorganic pool were estimated using the isotopic dilution technique. In an initial study fresh soil was mixed with combinations of two inorganic S levels (0 and 10 μg S g−1 soil) and three plant residues (wheat straw, perennial ryegrass and oilseed rape) and followed over 32 days of incubation. As 35S recovery was inadequate prior to day 2 and re-mineralisation of immobilised 35S occurred after day 8 thereby invalidating the method, estimates of gross S transformation rates should be based on data sampled between days 2 and 8. In the main experiment 16 plant residues with ranges in S contents of 0.08-0.81%, C/S ratios of 50-604 and lignin content of 0.9-10.8 were mixed with soil and carrier-free 35S label. Net turnover rates varied from 58% of S in Persian clover being immobilised to 76% of S in winter cress being mineralised within 5 days of incubation. Gross S mineralisation varied from 0.9-14.9 μg S g−1 soil d−1, whereas gross immobilisation only varied from 0.5 to 3.1 μg S g−1 d−1. Gross S immobilisation was strongly correlated to the C/S ratio of the plant material (P<0.001), whereas gross S mineralisation showed a weaker, but still significant, correlation with lignin content (P<0.05). The results indicate that immobilisation may predominantly have been a biological process in response to carbon addition while early mineralisation may have been dominated by the biochemical hydrolysis of organic sulphates in the residues. If attention is paid to the various constraints and limitations, isotopic pool dilution using 35S offers a tool that may prove valuable in understanding and modelling soil S turnover.  相似文献   

11.
The C mineralisation pattern during the early stage of decomposition of plant materials is largely determined by their content of different carbohydrates. This study investigated whether detailed plant analysis could provide a better prediction of C mineralisation during decomposition than proximate analysis [neutral detergent solution (NDF)/acid detergent solution (ADF)]. The detailed analysis included sugars, fructans, starch, pectin, cellulose, lignin and organic N. To determine whether differences in decomposition rate were related to differences in hemicellulose composition, the analysis particularly emphasised the concentrations of arabinose and xylose in hemicelluloses. Carbon dioxide evolution was monitored hourly in soil amended with ten different plant materials. Principal component and regression analysis showed that C mineralisation during day 1 was closely related to free sugars, fructans and soluble organic N components (R 2 = 0.83). The sum of non-cellulose structural carbohydrates (intermediate NDF/ADF fraction) was not related to C mineralisation between days 1 and 9. In contrast, a model including starch and protein in addition to the non-cellulose structural carbohydrates, with the hemicelluloses replaced by arabinose and xylose, showed a strong relationship with evolved CO2 (R 2 = 0.87). Carbon mineralisation between days 9 and 34 was better explained by xylan, cellulose and lignin (R 2 = 0.72) than by lignocellulose in the ADF fraction. Our results indicated that proximate analyses were not sufficient to explain differences in decomposition. To predict C mineralisation from the range of plant materials studied, we propose a minimum set of analyses comprising total N, free sugars, starch, arabinose, xylan, cellulose and lignin.  相似文献   

12.
To formulate best management practices for animal slurry, it is important to understand and predict its decomposition in the soil. Slurry decomposition dynamics can be studied by measuring CO2 fluxes and soil mineral nitrogen concentration during laboratory incubations and subsequently calibrating a simulation model. Carbon and nitrogen dynamics are linked and both should be properly simulated. In this work we wanted to identify the tradeoffs between errors in the simulation of C respiration and of soil inorganic N concentration.We optimised six parameters of CN-SIM (a mechanistic dynamic simulation model), using data of respired C and soil inorganic N measured during a 180-day laboratory incubation of five dairy slurries on three soils. Optimisation was carried out with a multi-objective genetic algorithm (NSGA-II), by minimising the Relative Root Mean Squared Error (RRMSE) between observations and simulations.The simulation of C respiration was frequently conflicting with the simulation of inorganic N, i.e. low RRMSE–CO2 corresponded with high RRMSE–N and vice versa. When minimising RRMSE–CO2 a set of parameters was obtained that enhanced microbial N immobilisation and reduced the turnover of the organic pools, to match the observed decrease of inorganic N in the 28 days after slurry addition to soil. Remineralisation occurring in the following 150 days caused a marked overestimation of inorganic N. When minimising RRMSE–N, the optimisation provided parameters that strongly reduced remineralisation of immobilised N by markedly diminishing C respiration, with a consequent underestimation of CO2 emission. A modified version of the model, containing a simple implementation of denitrification and of clay fixation/release of ammonium, performed better than the original model for most treatments.We conclude that the mineralisation/immobilisation turnover in the model is not fully adequate to represent C and N dynamics. We also discuss the implementation of changes (time-varying microbial efficiency and C to N ratio; simulation of ammonium clay fixation and emissions of N2/N2O) to improve model performance.  相似文献   

13.
The kinetics of N immobilisation/mineralisation for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: a loamy sand, intensively cropped horticultural soil subject to large inputs of inorganic fertilisers and pesticides (Balmalcolm - pH 7.2, organic matter 3.3%); a sandy loam soil highly enriched with organic manures and used for organic vegetable production (Strathmiglo - pH 7.1, organic matter 7.3%); and a loamy sand soil of low fertility in a zero-grazing, low intensity organic ley-arable rotation (Aldrochty pH 6.0, organic matter 5.0%). Incubations of soils with 1,000 mg cellulose-C kg-1 soil at 8°C, showed peak N immobilisation of 71Lj, 92Lj and 65ᆣ mg N g-1 added C for the Balmalcolm (after 34 days), Strathmiglo (after 34 days) and Aldrochty soils (after 63 days). The N remineralisation by the end of the incubation (>300 days) was 0, 50 and 22 mg N g-1 cellulose-C in the Balmalcolm, Strathmiglo soil and Aldrochty soils, respectively. Only about 30% of the N immobilisation could be explained by soil microbial biomass N accumulation (much less than expected from model simulations). The C/N ratio of the extra microbial biomass was quite wide (19). Bacterial, protozoan and nematode biomass accounted for only 18%, 0.1% and 0.5% of the extra C immobilisation, respectively. These data suggest that fungal biomass growth and deposition of recalcitrant fungal metabolites are the main sinks for the N immobilised. With 1,000 mg glucose-C kg -1 added to the Balmalcolm soil, about 75 mg N g-1 added C were immobilised after 6 days. Under less well aerated conditions at 15°C, immobilisation of only 10-20 mg N g-1 added cellulose C took place in 2-4 weeks, but soluble organic C increased greatly. The N remineralised after 4-6 weeks.  相似文献   

14.
Improved understanding of the interactive relationships of plant material decomposition kinetics to biochemical characteristics and nitrogen availability is required for terrestrial C accounting and sustainable land management. In this study, 15 typical and/or native Australian plant materials were finely ground and incubated with a sandy soil at 25 °C and 55% water holding capacity without nitrogen (−N) or with nitrogen (+N) addition (77 mg N kg−1 soil as KNO3). The C mineralisation dynamics were monitored for 356 days and the initial biochemical characteristics of the plant materials were determined by NMR and wet-chemical analyses.Under the −N treatment, C mineralisation rates of the plant materials were positively correlated with their initial N contents during the first several weeks, and then negatively correlated with lignin and polyphenols contents during the late stages of incubation. Thus the ratios of lignin/N, polyphenols/N and (lignin+polyphenols)/N had more consistent correlation with the cumulative amounts of C mineralised throughout the incubation than did any single component. In terms of the C types determined by NMR analysis, the C mineralisation rates were initially related positively to carbonyl C contents, and then negatively to aryl and O-aryl C contents from day 3 onwards.Addition of NO3-N accelerated C mineralisation during the early stages, but resulted in lower cumulative C mineralisation at the end of the incubation for most plant materials. Under the +N treatment, the decomposition rates were correlated with the contents of lignin and the sum of cellulose+acid detergent-extractable non-phenolic compounds, or with aryl, O-aryl and N-alkyl+methoxyl C contents. Regardless of the N treatment, the ratios of aryl/carbonyl, O-aryl/carbonyl and (aryl+O-aryl)/carbonyl C had the closest and most consistent correlations with the cumulative C mineralisation among all biochemical indices examined.A double exponential model with defined mineralisation rate constants for the active and slow pools was used to describe the C mineralisation dynamics. The biological meanings of the kinetically estimated active and slow pool sizes are interpreted and their relationships to the initial chemical/biochemical composition of the plant materials are explored.  相似文献   

15.
In this study, gross nitrogen (N) mineralisation rates were determined in six pasture soils (Fleming, Kairanga, Karapoti, Lismore, Templeton and Waikoikoi) from three different regions of New Zealand. The soils were kept under controlled soil water potential (–10 to –30 kPa) and temperature (12–20°C) conditions in a glasshouse. The gross N mineralisation rates ranged from 0.76 to 5.87 g N g–1 soil day–1 in the six soils and were positively correlated with the amount of amino acid-N (AA-N), ammonia-N (NH3-N), total hydrolysable-N (TH-N), microbial biomass-carbon (MB-C), microbial biomass-N (MB-N), protease activity and organic C and N. A stepwise regression was used to generate equations that could best describe gross N mineralisation rates. Microbial biomass-carbon and AA-N were included in the equation that best described the gross N mineralisation rate:
The total amounts of N mineralised over the 1-year period were equivalent to between 492 and 1,351 kg N ha–1 year–1. Assuming mineralisation continues at a steady state throughout the year, this represents between 12 and 26% of the total organic N mineralised per year in these pasture soils.  相似文献   

16.
An experiment to follow the mineralization of organic nitrogen in various manures showed the superiority of liquid slurry over sun-dried slurry and farm compost. The retarding effect of sun-drying on nitrogen mineralisation is attributed to poor dispersion of colloidal material and thus increased resistance to subsequent microbial decomposition. Alternate wetting and drying of the manured soil and treatment of the dried slurry with 1 per cent NaOH increased mineralisation. The manure prepared by the absorption of liquid slurry in green leaf powder mineralised rapidly indicating the value of utilising slurry in this manner. The organo-mineral fertilizer prepared by enriching slurry with urea yielded over 50 per cent nitrogen in a mineralization test, which was 30 per cent less than from urea alone.  相似文献   

17.
Journal of Soils and Sediments - This study investigated the C and N mineralisation potential of solid fractions (SFs) from co-digestated pig manure after P-stripping (P-POOR SF) in comparison with...  相似文献   

18.
 The capability of the NCSOIL computer model to simulate the effects of residue fractions on mineralisation-immobilisation turnover was evaluated. Heterogeneous organic substrates were represented in the model by three Van Soest pools, decomposing at different rates. Dried and ground wheat straw, sunflower stalks, wheat stubble and sheep manure (5.22 g kg–1 soil) were respectively added to a Chromic Calcixerert and aerobically incubated for 224 days at 22±2  °C and 75% field capacity. The CO2 evolution rates peaked shortly after the C amendments were added, with the highest rate in the sunflower- stalk-amended soils. The addition of organic substrates induced rapid N immobilisation. Net mineralisation was detected earliest in the sunflower-stalk treatment (day 14), while soils with the other amendments showed no net N mineralisation until day 52. The NCSOIL model was calibrated for this soil with CO2 and inorganic N data from the control soil, yielding a χ2 value of 0.011. The overestimation by the model of the C mineralisation data in the case of C-amended soils clearly showed that the concept of three Van Soest pools, decomposing independently at a specific rate constant, is not valid. A retardation factor, that was related to the lignin content of the decomposing material, was introduced into the model. After its introduction the model satisfactorily simulated the C mineralisation rates. However, for all plant residues, N mineralisation was underestimated towards the end of the incubation period. In the case of the soil amended with sheep manure, there was a large discrepancy between simulated and experimental N mineralisation-immobilisation kinetics, suggesting a different allocation of N in animal manure to N-containing fractions compared to that of plant residues. The results indicated that a N fractionation procedure for organic residues should be tested and incorporated into the model. Received: 9 January 1998  相似文献   

19.
Seventeen different added organic materials (AOM) in a sandy soil were incubated under controlled laboratory conditions (28 °C, 75% WHC), and examined for C and N mineralisation. The transformation of added organics (TAO) model has been presented in previous work for predicting C mineralisation. The two variables (very labile and stable fractions of AOM) used in TAO have been related to the biochemical characteristics of the AOM. The transformed added organic N fraction (TAONF) was estimated from the remaining CAOM and NAOM linked by the C-to-N ratios. TAONF was split (Pim parameter) into immobilised N (imN) and inorganic N (inorgN). When necessary, an additional N mineralisation of imN was predicted by first order kinetics (constant kremin). The TAO version with the two parameters Pim and kremin allowed us to predict very different dynamics of N mineralisation and N immobilisation from the AOM. In a few cases, another first order kinetic law (constant kv) was used to predict N volatilisation from inorgN.Biochemical characteristics of AOM were used for predicting N transformations. First, at each incubation date, inorgN was approximated to inorgNa=α(N-to-CAOM)+β by linear regression. The α, β and −β/α (C-to-NAOM threshold for mineralisation/immobilisation) were related to time. The TAO expression (1−Pim)TAONF was then replaced by the proposed approximation inorgNa as a function of incubation time and C-to-NAOM. Secondly, significant relationships were computed between kremin and organic fibre content of AOM. Finally, a TAO approximation was proposed for predicting the simultaneous transformations of C and N, only using biochemical data (plus the kv parameter in a few cases of N volatilisation). For all AOMs, the validity of the approximation and its borderline cases were examined by comparing the two TAO versions.  相似文献   

20.
We investigated the relationship between soil organic matter (SOM) content and N dynamics in three grassland soils (0-10 and 10-20 cm depth) of different age (6, 14 and 50 y-old) with sandy loam textures. To study the distribution of the total C and N content the SOM was fractionated into light, intermediate and heavy density fractions of particulate macro-organic matter (150-2000 μm) and the 50-150 μm and <50 μm size fractions. The potential gross N transformation rates (mineralisation, nitrification, NH4+ and NO3 immobilization) were determined by means of short-term, fully mirrored 15N isotope dilution experiments (7-d incubations). The long-term potential net N mineralisation and gross N immobilization rates were measured in 70-d incubations. The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing age of the grassland soils. Significant differences in total SOM storage were detected for the long-term (50 y-old) conversion from arable land to permanent grassland. The largest relative increase in C and N contents had occurred in the heavy density fraction of the macro-organic matter, followed by the 50-150 and <50 μm fractions. Our results suggest that the heavy density fraction of the macro-organic matter could serve as a good indicator of early SOM accumulation, induced by converting arable land to permanent grassland. Gross N mineralisation, nitrification, and (long-term) gross N immobilization rates tended to increase with increasing age of the grasslands, and showed strong, positive correlations with the total C and N contents. The calculated gross N mineralisation rates (7-d incubations) and net N mineralisation rates (70-d incubations) corresponded with a gross N mineralisation of 643, 982 and 1876 kg N ha−1 y−1, and a net N mineralisation of 195, 208 and 274 kg N ha−1 y−1 in the upper 20 cm of the 6, 14 and 50 y-old grassland soils, respectively. Linear regression analysis showed that 93% of the variability of the gross N mineralisation rates could be explained by variation in the total N contents, whereas total N contents together with the C-to-N ratios of the <50 μm fraction explained 84% of the variability of the net N mineralisation rates. The relationship between long-term net N mineralisation rates and gross N mineralisation rates could be fitted by means of a logarithmic equation (net m=0.24Ln(gross m)+0.23, R2=0.69, P<0.05), which reflects that the ratio of gross N immobilization-to-gross N mineralisation tended to increase with increasing SOM contents. Microbial demand for N tended to increase with increasing SOM content in the grassland soils, indicating that potential N retention in soils through microbial N immobilization tends to be limited by C availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号