首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

Nitrous oxide (N2O) and methane (CH4) fluxes from a fertilized timothy (Phleum pratense L.) sward on the northern island of Japan were measured over 2?years using a randomized block design in the field. The objectives of the present study were to obtain annual N2O and CH4 emission rates and to elucidate the effect of the applied material (control [no nitrogen], anaerobically digested cattle slurry [ADCS] or chemical fertilizer [CF]) and the application season (autumn or spring) on the annual N2O emission, fertilizer-induced N2O emission factor (EF) and the annual CH4 absorption. Ammonium sulfate was applied to the CF plots at the same application rate of NH4-N to the ADCS plots. A three-way ANOVA was used to examine the significance of the factors (the applied material, the application season and the year). The ANOVA for the annual N2O emission rates showed a significant effect with regard to the applied material (P?=?0.042). The annual N2O emission rate from the control plots (0.398?kg N2O-N ha?1?year?1) was significantly lower than that from the ADCS plots (0.708?kg N2O-N ha?1?year?1) and the CF plots (0.636?kg N2O-N ha?1?year?1). There was no significant difference in the annual N2O emission rate between the ADCS and CF plots. The ANOVA for the EFs showed insignificance of all factors (P?>?0.05). The total mean?±?standard error of the EFs (fertilizer-induced N2O-N emission/total applied N) was 0.0024?±?0.0007 (kg N2O-N [kg N]?1), which is similar to the reported EF (0.0032?±?0.0013) for well-drained uplands in Japan. The CH4 absorption rates differed significantly between years (P?=?0.014). The CH4 absorption rate in the first year (3.28?kg CH4?ha?1?year?1) was higher than that in the second year (2.31?kg CH4?ha?1?year?1), probably as a result of lower precipitation in the first year. In conclusion, under the same application rate of NH4-N, differences in the applied materials (ADCS or CF) and the application season (autumn or spring) led to no significant differences in N2O emission, fertilizer-induced N2O EF and CH4 absorption.  相似文献   

2.
A lysimeter experiment was carried out to evaluate the effects of the NH3 volatilization mitigation by adding anaerobically digested cattle slurry (ADCS) alone, with wood vinegar (WV) or with a higher level of floodwater (HFW), on emissions of CH4 and N2O from a paddy soil planted with fodder rice. We have carried out the following treatments: (1) chemical fertilizer, (2) ADCS, (3) ADCS + WV, and (4) ADCS + HFW; the height of floodwater was 10 cm in the latter treatment, and it was 3 to 4 cm in the other treatments just before fertilizer applications. Nitrogen fertilizer rate added to soil in each treatment was 30 g NH4+–N m−2 (split in one basal and two top-dressing additions). Ammonia volatilization in the ADCS treatment was 2.7 g NH3–N m−2 throughout the growing season, and it was significantly reduced by 79% and 55% in the ADCS + WV and ADCS + HFW treatments, respectively. The total amount of CH4 emitted in the ADCS treatment in the growing season was not significantly enhanced by the mitigation of NH3 volatilization either by adding wood vinegar or by increasing the height of the floodwater. Negligible N2O emissions were observed in all treatments during the growing period.  相似文献   

3.
The DNDC (DeNitrification-DeComposition)-Rice model, one of the most advanced process-based models for the estimation of greenhouse gas emissions from paddy fields, has been discussed mostly in terms of the reproducibility of observed methane (CH4) emissions from Japanese rice paddies, but the model has not yet been validated for tropical rice paddies under alternate wetting and drying (AWD) irrigation management, a water-saving technique. We validated the model by using CH4 and nitrous oxide (N2O) flux data from rice in pots cultivated under AWD irrigation management in a screen-house at the International Rice Research Institute (Los Baños, the Philippines). After minor modification and adjustment of the model to the experimental irrigation conditions, we calculated grain yield and straw production. The observed mean daily CH4 fluxes from the continuous flooding (CF) and AWD pots were 4.49 and 1.22?kg?C?ha?1?day?1, respectively, and the observed mean daily N2O fluxes from the pots were 0.105 and 34.1?g?N?ha?1?day?1, respectively. The root-mean-square errors, indicators of simulation error, of daily CH4 fluxes from CF and AWD pots were calculated as 1.76 and 1.86?kg?C?ha?1?day?1, respectively, and those of daily N2O fluxes were 2.23 and 124?g?N?ha?1?day?1, respectively. The simulated gross CH4 emissions for CF and AWD from the puddling stage (2 days before transplanting) to harvest (97 days after transplanting) were 417 and 126?kg?C?ha?1, respectively; these values were 9.8% lower and 0.76% higher, respectively, than the observed values. The simulated gross N2O emissions during the same period were 0.0279 and 1.45?kg?N?ha?1 for CF and AWD, respectively; these values were respectively 87% and 29% lower than the observed values. The observed total global warming potential (GWP) of AWD resulting from the CH4 and N2O emissions was approximately one-third of that in the CF treatment. The simulated GWPs of both CF and AWD were close to the observed values despite the discrepancy in N2O emissions, because N2O emissions contributed much less than CH4 emissions to the total GWP. These results suggest that the DNDC-Rice model can be used to estimate CH4 emission and total GWP from tropical paddy fields under both CF and AWD conditions.  相似文献   

4.
Drainage of peatlands affects the fluxes of greenhouse gases (GHGs). Organic soils used for agriculture contribute a large proportion of anthropogenic GHG emissions, and on-farm mitigation options are important. This field study investigated whether choice of a cropping system can be used to mitigate emissions of N2O and influence CH4 fluxes from cultivated organic and carbon-rich soils during the growing season. Ten different sites in southern Sweden representing peat soils, peaty marl and gyttja clay, with a range of different soil properties, were used for on-site measurements of N2O and CH4 fluxes. The fluxes during the growing season from soils under two different crops grown in the same field and same environmental conditions were monitored. Crop intensities varied from grasslands to intensive potato cultivation. The results showed no difference in median seasonal N2O emissions between the two crops compared. Median seasonal emissions ranged from 0 to 919?µg?N2O?m?2?h?1, with peaks on individual sampling occasions of up to 3317?µg?N2O?m?2?h?1. Nitrous oxide emissions differed widely between sites, indicating that soil properties are a regulating factor. However, pH was the only soil factor that correlated with N2O emissions (negative exponential correlation). The type of crop grown on the soil did not influence CH4 fluxes. Median seasonal CH4 flux from the different sites ranged from uptake of 36?µg CH4?m?2?h?1 to release of 4.5?µg?CH4?m?2?h?1. From our results, it was concluded that farmers cannot mitigate N2O emissions during the growing season or influence CH4 fluxes by changing the cropping system in the field.  相似文献   

5.
Abstract

Methane emission rates from plots with and without fertilizer and rice straw application, and growth of two rice varieties (an improved variety, IR74 or IR64, and a local variety, Krueng Aceh) in two Indonesian paddy fields (Inceptisol and Alfisol soils of volcanic ash origin) were measured every week throughout the growth period in the first and the second cropping seasons, 1994. The CH4 emission rates from the fields were similar between the two varieties. The effect of chemical fertilizer on the increase of the emissions was observed only in the Tabanan paddy field for the plots treated with rice straw. Application of rice straw increased the CH4 emission rates. The mean rates of CH4 emission were 1.37-2.13 mg CH4?C m?2 h?1 for the plots without rice straw and 2.14–3.62 mg CH4?C m?2 h?1 for the plots with rice straw application in the Alfisol plots, and 2.32–3.32 mg CH4 -C m-2 h-1 for the plots without rice straw and 4.18–6.35 mg CH4?C m?2 h?1 for the plots with rice straw application in the Inceptisol plots, respectively. Total amounts of CH4 emitted during the growth period were 3.9–6.8 and 2.6–3.3 g CH4?C m?2 for the Alfisol plots and 6.9–10.7 and 4.2–5.8 g CH4?C m?2 for the Inceptisol plots with and without rice straw application, respectively. These findings suggested that CH4 emission from tropical paddy fields with soils of volcanic ash origin is low.  相似文献   

6.
Groundnut as a pre‐rice crop is usually harvested 1–2 months before rice transplanting, during which much of legume residue N released could be lost. Our objectives were to investigate the effect of mixing groundnut residues (GN, 5 Mg ha?1) with rice straw (RS) in different proportions on: (i) regulating N dynamics, (ii) potential microbial interactions during decomposition, and (iii) associated nitrous oxide and methane emissions at weekly intervals during the lag phase until rice transplanting (i, ii) or harvest (iii). Decomposition was fastest in groundnut residues (64% N lost) with a negative interaction for N loss when mixed 1:1 with rice straw. Adding groundnut residues increased mineral N initially, while added rice straw led to initial microbial N immobilization. Mineral N in mixed residue treatments was significantly greatest at the beginning of rice transplanting. Soil microbial N and apparent efficiency were higher, while absolute and relative microbial C were often lowest in groundnut and mixed treatments. Microbial C:N ratio increased with increasing proportion of added rice straw. N2O losses were largest in the groundnut treatment (12.2 mg N2O‐N m?2 day?1) in the first week after residue incorporation and reduced by adding rice straw. N2O‐N emissions till rice harvest amounted to 0.73 g N2O‐N m?2 in the groundnut treatment. CH4 emissions were largest in mixed treatments (e.g. 155.9 g CH4 m?2, 1:1 treatment). Mixing residues resulted in a significant interaction in that observed gaseous losses were greater than predicted from a purely additive effect. It appears possible to regulate N dynamics by mixing rice straw with groundnut residues; however, at a trade‐off of increased CH4 emissions.  相似文献   

7.
Methane (CH4) and nitrous oxide (N2O) emissions from a paddy nursery at the rice seedling stage were measured on a daily basis by using the conventional rice cultivar Nangeng 56 under both conventional (NG-C) and reduced (NG-R) sowing density, and the hybrid rice Changyou 3 under both conventional (CY-C) and reduced (CY-R) sowing density. High N2O and CH4 emissions were observed during the first and last 2?weeks, respectively. Cumulative CH4 emissions were significantly (P?<?0.001) affected by sowing density rather than by the rice cultivar. Cumulative CH4 emissions reached 68.2?kg?C?ha?1 in the CY-C treatment and 121.6?kg?C?ha?1 in the NG-C treatment, which were significantly (P?<?0.001) higher than the emissions at reduced sowing densities (15.9?kg?C?ha?1 in the CY-R treatment and 20.9?kg?C?ha?1 in the NG-R treatment). Under the conventional sowing density, cumulative CH4 emissions during the seedling stage were comparable to data of rice-growing season. Both the rice cultivar and the sowing density significantly (P?<?0.05–0.01) affected cumulative N2O emissions. Relative to the CY cultivar, the NG cultivar increased global warming potential (GWP) over a 100-year horizon by 62.1% and 70.7% under the reduced and conventional sowing densities, respectively. The GWP of N2O and CH4 during the seedling stage was equivalent to the GWP of the entire rice-growing season in this region, indicating that the seedling stage is an important greenhouse gas emission source of rice agriculture.  相似文献   

8.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

9.
A field experiment was carried out to evaluate the effect of two whole-crop rice (Oryza sativa L.) cultivars, TULT and Takanari, on methane (CH4) emission in a paddy field fertilized with biogas slurry (BS) at rates of 0 (NF), 100 (BS100) and 300 (BS300) kg nitrogen (N) ha?1, in comparison with chemical fertilizer CF100 (100 kg N ha?1). Takanari produced significantly higher biomass (< 0.001) than TULT and showed significantly (< 0.01) lower CH4 emission than TULT. BS applications caused higher CH4 emission (52 ± 27 and 80 ± 19 g m?2 in BS100 and BS300, respectively) than did CF100 (42 ± 18 g m?2) and NF (28 ± 10 g m?2) in TULT. In contrast, there was no significant difference in CH4 emission in Takanari among the treatments (26 ± 2, 26 ± 2, 32 ± 4, 29 ± 8 g m?2 in NF, CF100, BS100 and BS300, respectively). Methane oxidizing bacteria (MOB) showed significantly (< 0.05) higher populations in Takanari than in TULT at harvest, which might be due to the higher root biomass (10.3 ± 2.2 g hill?1) in Takanari than in TULT (8.9 ± 1.8 g hill?1). MOB was significantly correlated with tiller number (R2 = 0.176*) and plant biomass (R2 = 0.242*). BS application showed higher copper (Cu) uptake in Takanari while it was not high in TULT. In contrast, it showed no difference in zinc (Zn) uptake in both varieties. Uptake of Cu was not different between the two varieties, while uptake of Zn in the grain was higher in TULT than in Takanari. The present study suggests that CH4 emission deriving from BS application in paddy field can be mitigated by selecting an appropriate cultivar, like Takanari. However, care should be taken for heavy metal uptake in selecting cultivars.  相似文献   

10.
The effect of controlled drainage on methane (CH4) and nitrous oxide (N2O) emissions from a paddy field under controlled irrigation (CI) was investigated by controlling the sub-surface drainage percolation rate with a lysimeter. CI technology is one of the major water-saving irrigation methods for rice growing in China. Water percolation rates were adjusted to three values (2, 5, and 8 mm d?1) in the study. On the one hand, the CH4 emission flux and total CH4 emission from paddy fields under CI decreased with the increase of percolation rates. Total CH4 emissions during the growth stage of rice were 1.83, 1.16, and 1.05 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. On the other hand, the N2O emission flux and total N2O emissions from paddy fields under CI increased with the increase of percolation rates. Total N2O emissions during the growth stage of rice were 0.304, 0.367, and 0.480 g m?2 in the 2, 5, and 8 mm d?1 plots, respectively. The seasonal carbon dioxide (CO2) equivalent of CH4 and N2O emissions from paddy fields under CI was lowest in the 2 mm d?1 plot (1364 kg CO2 ha?1). This value was 1.4% and 19.4% lower compared with that in the 5 and 8 mm d?1 plots, respectively. The joint application of CI and controlled drainage may be an effective mitigation strategy for reducing the carbon dioxide equivalents of CH4 and N2O emissions from paddy fields.  相似文献   

11.
To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha?1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m?2 h?1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 μg m?2 h?1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.  相似文献   

12.
Abstract

An ideal state for agroecosystems to mitigate global warming should include both decreasing CO2 and CH4 emissions and increasing soil carbon storage. Two-year field experiments were carried out to examine the effects of water management (continuous flooding [CF] and Eh control [EH]) and rice straw management (application [+S] and removal [–S]) on the soil carbon budget in a single-cropping paddy field in Japan. The EH water management based on soil redox potential that the authors have proposed decreased the total CH4 emission during the rice growing period compared with CF. The +S increased CO2 emission as soil respiration during the non-flooded fallow period compared with –S, but also increased straw residues in the soil. However, there was little evidence for sequential carbon accumulation in the soil over the year by +S. The resultant annual budget of soil carbon was a loss of 32–103 g C m?2 in the EH+S treatment compared with a loss of 166–188 g C m?2 in the CF–S treatment. Taking into account the global warming potentials, the EH+S treatment also decreased the total CO2-equivalent emission compared with the CF–S treatment. Consequently, a combination of appropriate water management and straw application will be an effective option in decreasing both CO2-equivalent emission and sustaining soil carbon storage.  相似文献   

13.
In Sweden, 90% of ammonia (NH3) emissions to the atmosphere originate from agriculture, predominantly from animal manure handling. It is well known that incorporation of manure into soil can reduce NH3 emissions after spreading. However, there is a risk of increased nitrous oxide (N2O) and methane (CH4) emissions caused by bacterial activity and limited oxygen availability under these conditions. A full‐scale injector was developed and evaluated in a field experiment on grassland. Cattle slurry was either injected in closed slots 5 cm below ground or band spread on the soil surface above the crop canopy at a rate of 25 t ha?1. In a control treatment, no slurry was applied. During a 5‐day period after application, NH3 emissions were measured using an equilibrium concentration method. Gas samples for estimating CH4 and N2O emissions were also collected during 7 weeks following slurry application. Injection in closed slots resulted in no detectable NH3 emissions. After band spreading, however, NH3 emissions corresponded to nearly 40% of the total ammoniacal nitrogen in the applied slurry. The injection of slurry gave rise to a broad peak of N2O emissions during the first 3 weeks after application. In total, for the measuring period, N2O emissions corresponded to 0.75 kg N ha?1. Band spreading resulted in only a very small N2O release of about 0.2 kg N ha?1 during the same period. Except for the first sampling occasion, the soil was predominantly a sink for CH4 in all the treatments. The use of the injector without slurry application reduced grass yield during unfavourable growing conditions. In conclusion, shallow injection in closed slots seems to be a promising technique to reduce negative environmental impacts from NH3 emissions with a limited release of N2O and CH4.  相似文献   

14.

Purpose

The effects of commercial compost fertilizer application on trace gas emissions are not well understood due to a lack of field experiments. The objective of this study was to evaluate the emissions of methane (CH4) and nitrous oxide (N2O) along with grain yield from a rice paddy as affected by different organic–inorganic mixed fertilizer (OIMF) treatments.

Materials and methods

A field experiment was initiated in 2006 with chemical compound fertilizer (CF) and three OIMF amendments including pig manure compost (PMC), Chinese medicine residue compost (CMC), and rapeseed cake compost (RCC), from a rice paddy in southeast China. The emissions of CH4 and N2O were simultaneously measured using the static opaque chamber method over the entire rice growing season in 2011. Soil biotic parameters were measured in soil collected after the rice was harvested in 2011.

Results and discussion

Relative to the control, the OIMF treatments significantly increased CH4 emissions by 56–99 %, mainly due to exogenous organic substrate input, whereas no difference was observed in the CF treatment. The N2O emissions were stimulated substantially by an average of 40 % due to nitrogen fertilization compared with the control. Consecutive OIMF application tended to increase the grain yield, making it marginally higher than that of the CF treatment (7 %, P?=?0.06). Compared with the control, the CF treatment slightly decreased the global warming potential and greenhouse gas (GHG) intensity, while they were remarkably increased in the OIMF treatments. Over the 5-year period of 2006–2011, the annual soil carbon sequestration rate was estimated to be 1.19 t C ha?1 year?1 for the control and 1.73–1.98 t C ha?1 year?1 for the fertilized treatments.

Conclusions

Our results suggest that despite the beneficial effects of increasing both grain yield and soil organic matter, OIMF application such as PMC, CMC, and RCC may be responsible for increased global warming due mainly to the stimulated CH4 emissions. This effect should be thus taken into account when balancing agricultural production and GHG mitigation.  相似文献   

15.
Biocovers are an alternative for mitigating fugitive and residual emissions of methane from landfills. In this study, we evaluated the performance of two experimental passive methane oxidation biocovers (PMOBs) constructed within the existing final cover of the St-Nicéphore landfill (Quebec, Canada). The biocovers were fed in a controlled manner with raw biogas and surface fluxes were obtained using static chambers. This enabled calculating mass balances of CH4 and oxidation efficiencies (f o_MB). Most of the time, f o_MB????92?% were obtained for loadings as high as 818?g?CH4?m?2?day?1 (PMOB-2) and 290?g?CH4?m?2?day?1 (PMOB-3B). The lowest efficiencies (f o_MB?=?45.5?% and 34.0?%, respectively) were obtained during cold days (air temperature ~0?°C). Efficiencies were also calculated using stable isotopes (f o_SI); the highest f o_SI were 66.4?% for PMOB-2 and 87.3?% for PMOB-3B; whereas the lowest were 18.8?% and 23.1?%, respectively. However, f o_SI values reflect CH4 oxidation up to a depth of 0.10?m, which may partly explain the difference in regards to mass balance-derived efficiencies. Indeed, it is expected that a significant fraction of the total CH4 oxidation occurs within the zone near the surface, where there is greater O2 availability. The influence of the values of fractionation factors ?? ox and ?? trans were also evaluated in this paper.  相似文献   

16.
ABSTRACT

Irrigated rice cultivation is a major source of greenhouse gas (GHG) emissions from agriculture. Methane (CH4) and nitrous oxide (N2O) are emitted not only throughout the growing season but also in the fallow period between crops. A study was conducted for two transition periods between rice crops (dry to wet season transition and wet to dry season transition) in the Philippines to investigate the effect of water and tillage management on CH4 and N2O emissions as well as on soil nitrate and ammonium. Management treatments between rice crops included (1) continuous flooding (F), (2) soil drying (D), (3) soil drying with aerobic tillage (D + T), and (4) soil drying and wetting (D + W). The static closed chamber method was used to measure CH4 and N2O fluxes.

Soil nitrate accumulated and N2O was emitted in treatments with soil drying. Nitrate disappeared while ammonium gradually increased after the soil was flooded during land preparation, indicating net nitrogen mineralization. N2O emissions were highest in both transition periods in D + W (437 and 645 µg N2O m?2 h?1). Methane emissions were significant in only the F treatment. The highest global warming potential (GWP) in the transition between rice crops occurred in F, with CH4 contributing almost 100% to the GWP. The GWP from other treatments was lower than F, with about 60–99% of the GWP attributed to N2O emissions in treatments with soil drying. The GWP in the transition between rice crops represented up to 26% of the total GWP from harvest to harvest. This study demonstrates that the transition period can be an important source of GHG emissions with relative importance of CH4 and N2O depending on the soil water regime. Therefore, the transition period should not be disregarded when estimating GHG emissions for rice cropping systems.  相似文献   

17.
Greenhouse gases are known to play an important role in global warming. In this study, we determined the effects of selected soil and climate variables on nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from a tropical grassland fertilized with chicken slurry, swine slurry, cattle slurry, and cattle compost. Cumulative N2O emissions did not differ between treatments and varied from 29.26 to 32.85 mg N m-2. Similarly, cumulative CH4 emissions were not significantly different among the treatments and ranged from 6.34 to 57.73 mg CH4 m-2. Slurry and compost application induced CO2 emissions that were significantly different from those in the control treatment. The CH4 conversion factors measured were 0.21%, 1.39%, 4.39%, and 5.07% for cattle compost, chicken slurry, swine slurry, and cattle slurry, respectively, differing from the recommendations of the Intergovernmental Panel on Climate Change (IPCC). The fraction of added N emitted as N2O was 0.39%, which was lower than the IPCC default value of 2%. Our findings suggest that N2O emissions could be mitigated by replacing synthetic fertilizer sources with either biofertilizer or compost. Our results indicate the following:N2O emission was mainly controlled by soil temperature, followed by soil moisture and then soil NH4+ content; CH4 fluxes were mainly controlled by soil moisture and chamber headspace temperature; and CO2 fluxes were mainly controlled by chamber headspace temperature and soil moisture.  相似文献   

18.
On the main Japanese island of Honshu, bark or sawdust is often added to cattle excreta as part of the composting process. Dairy farmers sometimes need to dispose of manure that is excess to their requirements by spreading it on their grasslands. We assessed the effect of application of bark- or sawdust-containing manure at different rates on annual nitrous oxide (N2O) and methane (CH4) emissions from a grassland soil. Nitrous oxide and CH4 fluxes from an orchardgrass (Dactylis glomerata L.) grassland that received this manure at 0, 50, 100, 200, or 300?Mg?ha?1?yr?1 were measured over a two-year period by using closed chambers. Two-way analysis of variance (ANOVA) was employed to examine the effect of annual manure application rates and years on annual N2O and CH4 emissions. Annual N2O emissions ranged from 0.47 to 3.03?kg?N?ha?1?yr?1 and increased with increasing manure application rate. Nitrous oxide emissions during the 140-day period following manure application increased with increasing manure application rate, with the total nitrogen concentration in the manure, and with cumulative precipitation during the 140-day period. However, manure application rate did not affect the N2O emission factors of the manure. The overall average N2O emission factor was 0.068%. Annual CH4 emissions ranged from ?1.12 to 0.01?kg?C?ha?1?yr?1. The annual manure application rate did not affect annual CH4 emissions.  相似文献   

19.
ABSTRACT

The anaerobic digestion of livestock manure is an environmentally compatible technology used for the production of renewable energy. Anaerobically digested residual slurry has been used worldwide as a liquid fertilizer in both upland and paddy fields. However, a controversial question remains as to whether the application of slurry to rice paddy fields increases methane emissions; although methane is one of the most prevalent greenhouse gases, little is known about the effects of the long-term application of residual slurry on methane emission. In this study, we repeatedly applied slurry to a paddy field for six years at different application rates (10, 15, and 20 g N m?2 based on ammonium-nitrogen content). At the fifth and sixth years of application, we evaluated the effect in terms of methane flux and soil total carbon content. The effect of the long-term application of the slurry (10 g N m?2) on grain yield was equivalent to that of chemical fertilizer (10 g N m?2). The application of the residual slurry was likely to increase the cumulative methane emissions during rice growing season in both 2006 and 2007. On the other hand, we observed that soil total carbon did not accumulate significantly in the soil. Thus, we cannot rule out the potential risk of additional methane emissions caused by the application of the residuary slurry to paddy fields.  相似文献   

20.
Wetlands are major natural sources of greenhouse gases (GHGs). In central and southern Africa, one of the most extensive wetlands are dambos (seasonal wetlands) which occupy 20–25% of land area. However, there are very little data on GHG methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) emissions from dambos, and this study presents the first estimates from dambos in Zimbabwe. The objective was to evaluate the effects of catena positions; upland, dambo mid-slope and dambo bottom, on GHG emissions along an undisturbed dambo transect. Methane emissions were ?0.3, 29.5 and ?1.3 mg m?2 hr?1, N2O emission were 40.1, 3.9 and 5.5 µg m2 hr?1, while CO2 emissions were 2648.9, 896.2 and 590.1 mg m?2 hr?1 for upland, mid-slope and bottom catena, respectively. Our results showed that uplands were important sources of N2O and CO2, and a sink for CH4, while the dambo mid-slope position was a major source of CH4, but a weak source of CO2 and N2O. Dambo bottom catena was weak source GHGs. Overall, dambos were major sources of CH4 and weak sources of N2O and CO2.We concluded that, depending on catenal position, dambos can be major or minor sources of GHGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号