共查询到20条相似文献,搜索用时 0 毫秒
1.
Grant SG 《Science (New York, N.Y.)》2005,310(5746):234-5; author reply 234-5
2.
mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination 总被引:1,自引:0,他引:1
Ichise T Kano M Hashimoto K Yanagihara D Nakao K Shigemoto R Katsuki M Aiba A 《Science (New York, N.Y.)》2000,288(5472):1832-1835
Targeted deletion of metabotropic glutamate receptor-subtype 1 (mGluR1) gene can cause defects in development and function in the cerebellum. We introduced the mGluR1alpha transgene into mGluR1-null mutant [mGluR1 (-/-)] mice with a Purkinje cell (PC)-specific promoter. mGluR1-rescue mice showed normal cerebellar long-term depression and regression of multiple climbing fiber innervation, events significantly impaired in mGluR1 (-/-) mice. The impaired motor coordination was rescued by this transgene, in a dose-dependent manner. We propose that mGluR1 in PCs is a key molecule for normal synapse formation, synaptic plasticity, and motor control in the cerebellum. 相似文献
3.
Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis 总被引:1,自引:0,他引:1
Ricci R Sumara G Sumara I Rozenberg I Kurrer M Akhmedov A Hersberger M Eriksson U Eberli FR Becher B Borén J Chen M Cybulsky MI Moore KJ Freeman MW Wagner EF Matter CM Lüscher TF 《Science (New York, N.Y.)》2004,306(5701):1558-1561
In vitro studies suggest a role for c-Jun N-terminal kinases (JNKs) in proatherogenic cellular processes. We show that atherosclerosis-prone ApoE-/- mice simultaneously lacking JNK2 (ApoE-/- JNK2-/- mice), but not ApoE-/- JNK1-/- mice, developed less atherosclerosis than do ApoE-/- mice. Pharmacological inhibition of JNK activity efficiently reduced plaque formation. Macrophages lacking JNK2 displayed suppressed foam cell formation caused by defective uptake and degradation of modified lipoproteins and showed increased amounts of the modified lipoprotein-binding and -internalizing scavenger receptor A (SR-A), whose phosphorylation was markedly decreased. Macrophage-restricted deletion of JNK2 was sufficient to decrease atherogenesis. Thus, JNK2-dependent phosphorylation of SR-A promotes uptake of lipids in macrophages, thereby regulating foam cell formation, a critical step in atherogenesis. 相似文献
4.
Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction 总被引:1,自引:0,他引:1
Hayashi Y Shi SH Esteban JA Piccini A Poncer JC Malinow R 《Science (New York, N.Y.)》2000,287(5461):2262-2267
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein. 相似文献
5.
Ma HT Patterson RL van Rossum DB Birnbaumer L Mikoshiba K Gill DL 《Science (New York, N.Y.)》2000,287(5458):1647-1651
The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human embryonic kidney (HEK293) cells revealed that TRP3 channels differ in being store independent. However, condensed cortical F-actin prevented activation of both SOC and TRP3 channels, which suggests that ER-PM interactions underlie coupling of both channels. A cell-permeant inhibitor of inositol trisphosphate receptor (InsP3R) function, 2-aminoethoxydiphenyl borate, prevented both receptor-induced TRP3 activation and store-induced SOC activation. It is concluded that InsP3Rs mediate both SOC and TRP channel opening and that the InsP3R is essential for maintaining coupling between store emptying and physiological activation of SOCs. 相似文献
6.
Use-dependent forms of synaptic plasticity have been extensively characterized at chemical synapses, but a relationship between natural activity and strength at electrical synapses remains elusive. The thalamic reticular nucleus (TRN), a brain area rich in gap-junctional (electrical) synapses, regulates cortical attention to the sensory surround and participates in shifts between arousal states; plasticity of electrical synapses may be a key mechanism underlying these processes. We observed long-term depression resulting from coordinated burst firing in pairs of coupled TRN neurons. Changes in gap-junctional communication were asymmetrical, indicating that regulation of connectivity depends on the direction of use. Modification of electrical synapses resulting from activity in coupled neurons is likely to be a widespread and powerful mechanism for dynamic reorganization of electrically coupled neuronal networks. 相似文献
7.
8.
Requirement of ets-2 expression for Xenopus oocyte maturation 总被引:6,自引:0,他引:6
Z Q Chen L A Burdett A K Seth J A Lautenberger T S Papas 《Science (New York, N.Y.)》1990,250(4986):1416-1418
9.
Transforming growth factor-beta (TGF-beta) signaling is mediated by a complex of type I (TBRI) and type II (TBRII) receptors. The type III receptor (TBRIII) lacks a recognizable signaling domain and has no clearly defined role in TGF-beta signaling. Cardiac endothelial cells that undergo epithelial-mesenchymal transformation express TBRIII, and here TBRIII-specific antisera were found to inhibit mesenchyme formation and migration in atrioventricular cushion explants. Misexpression of TBRIII in nontransforming ventricular endothelial cells conferred transformation in response to TGF-beta2. These results support a model where TBRIII localizes transformation in the heart and plays an essential, nonredundant role in TGF-beta signaling. 相似文献
10.
Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression 总被引:2,自引:0,他引:2
A hippocampal pyramidal neuron receives more than 10(4) excitatory glutamatergic synapses. Many of these synapses contain the molecular machinery for messenger RNA translation, suggesting that the protein complement (and thus function) of each synapse can be regulated on the basis of activity. Here, local postsynaptic protein synthesis, triggered by synaptic activation of metabotropic glutamate receptors, was found to modify synaptic transmission within minutes. 相似文献
11.
12.
The activation of metabotropic glutamate receptors (mGluRs) leads to long-term depression (mGluR-LTD) at many synapses of the brain. The induction of mGluR-LTD is well characterized, whereas the mechanisms underlying its expression remain largely elusive. mGluR-LTD in the ventral tegmental area (VTA) efficiently reverses cocaine-induced strengthening of excitatory inputs onto dopamine neurons. We show that mGluR-LTD is expressed by an exchange of GluR2-lacking AMPA receptors for GluR2-containing receptors with a lower single-channel conductance. The synaptic insertion of GluR2 depends on de novo protein synthesis via rapid messenger RNA translation of GluR2. Regulated synthesis of GluR2 in the VTA is therefore required to reverse cocaine-induced synaptic plasticity. 相似文献
13.
Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. 总被引:23,自引:0,他引:23
The signal recognition particle (SRP) directs signal sequence specific targeting of ribosomes to the rough endoplasmic reticulum. Displacement of the SRP from the signal sequence of a nascent polypeptide is a guanosine triphosphate (GTP)-dependent reaction mediated by the membrane-bound SRP receptor. A nonhydrolyzable GTP analog can replace GTP in the signal sequence displacement reaction, but the SRP then fails to dissociate from the membrane. Complexes of the SRP with its receptor containing the nonhydrolyzable analog are incompetent for subsequent rounds of protein translocation. Thus, vectorial targeting of ribosomes to the endoplasmic reticulum is controlled by a GTP hydrolysis cycle that regulates the affinity between the SRP, signal sequences, and the SRP receptor. 相似文献
14.
Insulin receptor phosphorylation may not be a prerequisite for acute insulin action 总被引:16,自引:0,他引:16
An antiserum to the insulin receptor mimicked insulin's acute actions on glucose transport, phosphorylation of integral membrane proteins, and internalization of the insulin receptor in isolated rat adipose cells. These insulinomimetic actions of the antiserum occurred without the equivalent increase in phosphorylation of the beta subunit of the insulin receptor observed with insulin. Thus, a role of receptor phosphorylation in acute insulin action is now questioned. 相似文献
15.
A current view is that cytotoxic stress, such as DNA damage, induces apoptosis by regulating the permeability of mitochondria. Mitochondria sequester several proteins that, if released, kill by activating caspases, the proteases that disassemble the cell. Cytokines activate caspases in a different way, by assembling receptor complexes that activate caspases directly; in this case, the subsequent mitochondrial permeabilization accelerates cell disassembly by amplifying caspase activity. We found that cytotoxic stress causes activation of caspase-2, and that this caspase is required for the permeabilization of mitochondria. Therefore, we argue that cytokine-induced and stress-induced apoptosis act through conceptually similar pathways in which mitochondria are amplifiers of caspase activity rather than initiators of caspase activation. 相似文献
16.
17.
Schaeffer EM Debnath J Yap G McVicar D Liao XC Littman DR Sher A Varmus HE Lenardo MJ Schwartzberg PL 《Science (New York, N.Y.)》1999,284(5414):638-641
T cell receptor (TCR) signaling requires activation of Zap-70 and Src family tyrosine kinases, but requirements for other tyrosine kinases are less clear. Combined deletion in mice of two Tec kinases, Rlk and Itk, caused marked defects in TCR responses including proliferation, cytokine production, and apoptosis in vitro and adaptive immune responses to Toxoplasma gondii in vivo. Molecular events immediately downstream from the TCR were intact in rlk-/-itk-/- cells, but intermediate events including inositol trisphosphate production, calcium mobilization, and mitogen-activated protein kinase activation were impaired, establishing Tec kinases as critical regulators of TCR signaling required for phospholipase C-gamma activation. 相似文献
18.
Brebner K Wong TP Liu L Liu Y Campsall P Gray S Phelps L Phillips AG Wang YT 《Science (New York, N.Y.)》2005,310(5752):1340-1343
Drug-dependent neural plasticity related to drug addiction and schizophrenia can be modeled in animals as behavioral sensitization, which is induced by repeated noncontingent or self-administration of many drugs of abuse. Molecular mechanisms that are critical for behavioral sensitization have yet to be specified. Long-term depression (LTD) of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor (AMPAR)-mediated synaptic transmission in the brain has been proposed as a cellular substrate for learning and memory. The expression of LTD in the nucleus accumbens (NAc) required clathrin-dependent endocytosis of postsynaptic AMPARs. NAc LTD was blocked by a dynamin-derived peptide that inhibited clathrin-mediated endocytosis or by a GluR2-derived peptide that blocked regulated AMPAR endocytosis. Systemic or intra-NAc infusion of the membrane-permeable GluR2 peptide prevented the expression of amphetamine-induced behavioral sensitization in the rat. 相似文献
19.
Behavioral studies have suggested that muscarinic cholinergic systems have an important role in learning and memory. A muscarinic cholinergic agonist is now shown to affect synaptic plasticity in the CA3 region of the hippocampal slice. Long-term potentiation (LTP) of the mossy fiber-CA3 synapse was blocked by muscarine. Low concentrations of muscarine (1 micromolar) had little effect on low-frequency (0.2 hertz) synaptic stimulation but did significantly reduce the magnitude and probability of induction of LTP. Experiments under voltage clamp showed that muscarine blocked the increase in excitatory synaptic conductance normally associated with LTP at this synapse. These results suggest a possible role for cholinergic systems in synaptic plasticity. 相似文献
20.
Requirement of nuclear prolactin for interleukin-2--stimulated proliferation of T lymphocytes 总被引:12,自引:0,他引:12
Prolactin (PRL) is necessary for the proliferation of cloned T lymphocytes in response to interleukin-2 (IL-2). Translocation of PRL into the nucleus occurs during IL-2--stimulated mitogenesis. Therefore, the function of intranuclear PRL in T cell proliferation was tested. Eukaryotic expression vectors were prepared to express wild-type PRL [PRL(WT)], PRL that lacks the signal sequence for translocation into the endoplasmic reticulum [PRL(ER-)], and chimeric PRL in which the signal peptide was replaced with the sequence that directs the nuclear translocation of the SV40 large T antigen [PRL(NT+)]. Expression of these constructs in a T cell line (Nb2) responsive to PRL and IL-2 resulted in localization of PRL in the extracellular milieu, cytoplasm, or nucleus, respectively. Stimulation with IL-2 alone resulted in a five- to tenfold increase in the incorporation of [3H]thymidine by cells expressing PRL(NT+) or PRL(WT) as compared to PRL(ER-) or the parental Nb2 cells. Only the PRL(NT+) clone proliferated continuously with IL-2 stimulation in the presence of antiserum to PRL. These results demonstrate that nuclear PRL is necessary for IL-2--stimulated proliferation and suggest that a peptide hormone can function in the nucleus without binding to its cell surface receptor. 相似文献