首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Oligoesterification reaction of wood with phthalic anhydride and glycidyl methacrylate (GMA) was investigated. The reaction proceeded smoothly at 90°C. The products obtained consisted of acetone-insoluble and soluble parts. The insoluble parts were novel oligoesterified woods with oligoester chains having methacrylate double bonds. The soluble parts were viscous liquids consisting mainly of free oligoesters not linked with the wood matrix, and contained small amounts of GMA and oligoesterified wood components which were dissolved out. The products (the oligoesterified wood-containing mixtures), when subjected to hotpressing, gave plasticized crosslinked wood boards whose surfaces are smooth, glossy, and plasticlike. In this case, plasticization of wood components and thermal polymerization of the methacrylate double bonds in the oligoester chains occurred simultaneously even in the absence of radical initiator. The soluble parts worked as a plasticizer for the wood components. The crosslinked wood boards exhibited outstanding properties in tensile strength (ca. 700 kg/cm2), flexural strength (ca. 900–1030 kg/cm2), and Rockwell hardness (ca. 120).  相似文献   

2.
Wetlaid/spunlace(wetlace) nonwovens with sufficient wet strength in use and disintegration under flow field can be widely used in dispersible moist wipes. To achieve superior properties, wood pulp/Lyocell wetlace nonwovens at different process parameters including pressure sum (sum of each Jet Head pressure), Lyocell blend ratio, and basis weight were prepared. Meanwhile, the effects of these process parameters on the wet strength and dispersibility of materials were investigated. The results show that the wet strength of wood pulp/Lyocell wetlace nonwoven increases as the increase of process parameters. Pressure sum has positive linear relationship with material wet strength and exponential relationship with material dispersibility. When pressure sum is beyond 135 bars, material basis weight has significant influence on the dispersibility. Pressure sum of 210 bars is the key value that Lyocell content affects the material dispersibility. Overall, at the minimum pressure sum of 190 bars, wood pulp/Lyocell (60/40) wetlace nonwoven (80 g m?2) has dispersion critical value with maximum wet strength.  相似文献   

3.
Abstract

Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

4.
Summary Oligoesterification of wood was investigated by alternately adding esterification reactions of wood with maleic anhydride and allyl glycidyl ether. The products obtained consisted of acetone-insoluble and soluble parts. The insoluble parts were novel oligoesterified woods with oligoester chains having polymerizable double bonds. The oligoester chain length showed a tendency to decrease with increase in wood content in feed. The soluble parts were free oligoesters which were not linked with the wood matrix. The products (the oligoesterified wood-containing mixtures), when subjected to hot-pressing in the presence of a peroxide, gave plasticized crosslinked wood boards whose surfaces are smooth, glossy, and plasticlike. In this case, the free oligoesters which were hardening worked as a plasticizer for the wood components and were combined, by the crosslinking, with the oligoesterified woods, resulting in the formation of the network structure. The crosslinked wood boards exhibited outstanding properties in heat distortion temperature (>165°C) and compressive strength (ca. 1,600–2,300 kg/cm2).  相似文献   

5.
研究了杨木线性振动摩擦焊接的干剪切强度、湿剪切强度和木破率。为提高杨木摩擦焊接的湿剪切强度与木破率,采用表面氧化、表面磺化以及表面涂覆的方式处理杨木板材,再经线性振动摩擦焊接进行黏合,使用万能力学试验机测得其剪切强度,对比表面处理前后剪切强度的变化,并利用傅里叶红外光谱分析了其表面处理前后基材和摩擦焊接层的化学基团变化情况,对胶合性能的变化做出解释。研究结果表明:杨木经过表面氧化磺化涂覆醋酸锌处理后,摩擦焊接层的干剪切强度为5.41 MPa,木破率为63%,与未处理的杨木相比,分别提高了48.22%和96.88%;湿剪切强度从0提高到1.34 MPa;摩擦焊接时厚度损失减少了46.4%。杨木分别经过表面氧化和表面磺化处理后,摩擦焊接层的干剪切强度仅为3.45和4.10 MPa,木破率为28%和42%,湿剪切强度为0.76和0.96 MPa。摩擦焊接层的红外光谱分析表明,经表面氧化磺化涂覆醋酸锌处理后,杨木中的纤维素和半纤维素分解,使木质素的相对含量有所增加,且活化了杨木中的—OH,与醋酸锌生成多醚,消耗了亲水性的—OH。  相似文献   

6.
Abstract

The shear fracture properties of green-glued one-component polyurethane (PUR) wood adhesive bonds subjected to kiln drying were investigated. The local shear strength and fracture energy of the wood adhesive bonds were determined from experimentally recorded complete shear stress versus deformation curves of the bond line. A stable test set-up and small specimens that were anti-symmetrically loaded were used in order to get a uniform and pure state of shear stress. Different moisture contents (MCs) and pressing times were investigated. The fracture properties of conventionally dry-glued wood adhesive bonds and of solid wood were used as reference. The results show that the fracture energy of green-glued bonds with PUR adhesive is dependent on the MC of wood and on the pressing time. The same fracture energy and strength can be obtained by green gluing as by dry gluing, but there seems to exist a maximum MC of sapwood, in the range between 78% and 160%, and a minimum pressing time, in the range between 3 h and 48 h, for which it can be achieved. Both dry- and green-glued polyurethane adhesive bonds were more ductile than solid wood.  相似文献   

7.
Abstract

To investigate the influence of growth ring angle, adhesive system and viscosity on the bonding properties of adhesive bonds, shear tension tests according to DIN EN 302-1 (2004) were conducted using one-component moisture-curing polyurethane, polyvinylacetate and urea-formaldehyde. Significant differences between the systems could be detected, which were reflected in the predominant failure behaviour for each system. Specimens showing wood failure were influenced mainly by the wood factors, whereas samples which had failed in the adhesive part of the bond differed only in the adhesive properties. The growth ring angle showed the same tendencies as it does in plain wood. Therefore, to gain more information on the adhesive performance in the bond, a loading along the LT plane seems more appropriate for beech wood used in DIN EN 302-1 (2004).  相似文献   

8.
The present study contributes to the controversial discussion in the literature whether Si–O–C bonds in wood–silica–gel composites exist. 13C NMR is a suitable method to proof such bonds. Because of the low concentration of 13C isotopes in natural wood, 13C cellulose was used as 13C-enriched substitute. A tailored sol for the impregnation of that cellulose was chosen by liquid 29Si NMR pre-investigations of various sols whose reactivity and stability were time-dependently analysed. It is based on a sub-stoichiometric hydrolysis of tetraethoxysilane (TEOS) with 1 mol water per mol TEOS. Thermal analyses were performed to show a comparability of the thermal behaviour of wood–silica–gel and cellulose–silica–gel composites. There are two strong hints of the existence of stable Si–O–C bonds: (1) by thermal analysis, a shift in the fire behaviour of 100 K can be observed with a change in pyrolysis behaviour of the composite and (2) the proof by REDOR NMR that a dipolar coupling between 29Si and 13C nuclei exists.  相似文献   

9.
Current knowledge of wood surface characteristics and surface modification are briefly reviewed and the postulated effects of chemical activation are summarized. It was found that aqueous sodium hydroxide can effectively activate wood surfaces to give strong dry autohesive bonds, but only low wet strength was obtained. However, excellent dry and wet wood bond strengths, equivalent to phenol-formaldehyde bonded samples, were obtained when methylolated lignin was used in combination with 3N sodium hydroxide activation. Several mechanisms of base activation are suggested, including enhanced wood surface contact and reactivity.  相似文献   

10.
In situ tensile tests were performed in an environmental scanning electron microscope (ESEM) on earlywood, transition wood and latewood cells of Norway spruce (Picea abies [L.] Karst.). In order to examine the single wood fibres in a wet state, a specially designed tensile testing stage with a cooling device was built. The fracture behaviour of the cell types was studied at high resolution while straining. Different failure mechanisms were observed for the three tissue types. The thin-walled earlywood fibres showed tension buckling which gave rise to crack initiation and resulted in low tensile strength, whereas thick-walled latewood fibres predominately failed by transverse crack propagation without fibre folding.  相似文献   

11.
There is a lack of quantitative data on the penetration depth and the amount of energy absorbed by green wood under infrared (IR) radiation. This lack of knowledge is a potential barrier to the development of IR heating as an alternative to soaking as a means of warming logs prior to peeling in the manufacture of plywood. Experimental measurements of normal hemispherical spectral reflectance and transmittance over the range 550–5,500 cm?1 wavenumbers on four wood species, beech, birch, Douglas-fir and spruce have brought new knowledge on mid-infrared absorption properties of green wood and removed some uncertainties. For instance, it is not possible to deliver energy deeper than up to 0.3 mm below the wood surface because 70–90 % of all incident IR radiation on the wood surface is absorbed in this layer. Some wood features, such as surface quality, the presence of knots and of free water in wood (the latter two having a more significant effect) influence the amount of energy absorbed. These results illustrate that IR radiation can heat the surface layers, but then heat penetrates deeper into the inside layers of wood by conduction.  相似文献   

12.
The influence of extractives on the radiation stability of wood   总被引:2,自引:0,他引:2  
Summary The critical dose above which a decrease in toughness of Western Red Cedar and Peroba wood, extracted with benzene-alcohol is noted, was determined to be approximately 0.5×106 rad lower than that for the same non-extracted species. Investigations have shown that the presence of benzene-alcohol extractives in wood raises its radiation stability. This conclusion is supported by the fact that the toughness curve which generally falls with increasing doses of absorbed irradiation shows a steeper decrease for extracted than for nonextracted wood.  相似文献   

13.
The flexural properties of wood–plastic composite (WPC) deck boards exposed to 9.5 years of environmental decay in Hilo, Hawaii, were compared to samples exposed to moisture and decay fungi for 12 weeks in the laboratory, to establish a correlation between sample flexural properties and calculated void volume. Specimens were tested for flexural strength and modulus, both wet and dry, at 23°C and 52°C. Some specimens degenerated to only 15% of original flexural strength. UV radiation had no impact on flexural properties of field-exposed boards; loss occurred mainly on the side opposite to the sun-exposed surface. The mechanism of the aging process on colonization of WPC by fungi was examined and is consistent with development of slow crack growth in the polyethylene matrix combined with wood decay by fungi. Wood particle decay, moisture, and elevated temperature were the major factors causing composite degradation, indicated by accumulation of voids and a severe decrease in flexural properties. To simulate long-term field impact (including decay) on WPC flexural properties in the laboratory, conditioning of specimens in hot water for an extended period of time is required. Exposure to water (70°C/5 days) was adequate for simulating long-term composite exposure in Hawaii of 4?×?15?×?86 mm3 specimens.  相似文献   

14.
Cryptomeria japonica (Japanese cedar) wood was liquefied using polyethylene glycol (PEG-400 and PEG-600)/glycerol as the solvent with H2SO4 as a catalyst. The blended epoxy resins were prepared by mixing the liquefied wood with epoxy resin of various weight ratios and used for wood gluing. The results showed that blended epoxy resins could cure under room temperature with an exothermic reaction. DSC thermoanalysis showed that increasing the blending amount of liquefied wood would shift the peak of curing reaction to a higher temperature but with less heat released. Blended epoxy resins had a good dry bonding strength for wood when cured at room temperature. However, curing with heat treatment could improve the wet bonding strength of blended epoxy resins, especially for those prepared with PEG-400-liquefied wood.  相似文献   

15.
A trial set-up with methods for sampling, treatment and analysis of small wood chips are presented in this paper, to determine important wood and fibre properties, like basic density, dry density, volume swelling of wood, Kraft pulp yield, fibre length, fibre coarseness, fibre width, lumen width and fibre wall thickness. The required time for one sample is about 1.5 man-hour, but this requires relatively larger series and trained personnel. Acceptable measurement accuracy is achieved when the volume of the wood sample is at least 1.5 ml, except that of wood volume swelling. To gain acceptable measurement accuracy for volume swelling, the wood volume should be increased to at least 3 ml, and preferably more than 5–6 ml per sample. The level of pulp yield and wood density do not show a significant effect on the measurement accuracy for fibre cross-section dimensions. Fibre coarseness, on the other hand, has a significant influence on these accuracies. A double measurement of fibre coarseness will improve the accuracy to an acceptable level. The method presented here may, together with information about trees and growth locations, form the basis for greater insight into the mechanisms involved in development of wood and fibre properties in trees, which in turn may provide better control and utilisation of wood for pulp and paper production.Abbreviations CWD cell wall density in dry wood=1500 kg/m3 - Ww dry weight of wood (kg) - Vmax green (wet) volume of wood (m3) - Vmin dry volume of wood (m3) - BD basic wood density (kg/m3) - DD dry wood density (kg/m3) - VS maximum volume swelling of wood (%) - Wp dry weight of pulp (kg) - PY pulp yield (%) - C fibre coarseness, the average weight of a unit length of fibre (g/m) - CL average chip length (mm) - CWT average cell wall thickness (m) - FW average fibre width (m) - l average native fibre length in solid wood - L chip length - lc average fibre length in wood chip (mm) - Lc length-weighted fibre length in wood chip (mm) - lw native average fibre length in wood (mm) - Lw native length-weighted fibre length in wood (mm) - LW average lumen width (m) - llw average native fibre length, length weighted, in wood - X average fibre length in chip - Xlw average fibre length, length weighted, in chip  相似文献   

16.
This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.  相似文献   

17.
Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

18.
Manufacture of plywood bonded with kenaf core powder   总被引:3,自引:0,他引:3  
Kenaf (Hibiscus cannabinus L.) core powder was used as a binder to manufacture three-ply plywoods of sugi (Cryptomeria japonica D. Don) by conventional hot pressing under various manufacturing conditions: hot-pressing conditions (pressure, temperature, and time) and powder conditions (grain size, spread volume, and moisture content). The adhesive shear strength and wood failure of plywoods were measured in accordance with the Japanese Agricultural Standard (JAS) for plywood. The result showed that fine kenaf core powder played a role as an effective binder when plywoods were pressed at high pressure, which caused extreme compression of veneer cells. In addition, the adhesive shear strength of plywoods in dry conditions was high regardless of pressing temperature and time, but it was sensitive to pressing temperature and time in wet conditions. The highest adhesive shear strength was obtained from plywoods manufactured with kenaf core powder (grain size 10 μm, spread volume 200 g/m2, moisture content 8.6%) under hot-pressing conditions (pressure 5.0 MPa using distance bars 4 mm thick, temperature 200°C, time 20–30 min). However, the plywood could not meet the requirement for the second grade of plywood by JAS because of its low water-resistance properties. Part of this article was presented at the 58th Annual Meeting of the Japan Wood Research Society, Tsukuba, March 2008, and the 10th World Conference on Timber Engineering, Miyazaki, June 2008  相似文献   

19.
ABSTRACT

Densification of resin impregnated wood under hot-pressing is a method that along with the potential for the reduction of set-recovery could additionally increase the density of wood and further improve other technical properties. In this study, the effect of the methylated melamine-formaldehyde modification on the shape memory effect of densified Populous nigra wood at various compression ratio levels was investigated. Furthermore, the effects on moisture content and compression ratio were also assessed. The most important conclusion drawn was that MF can act as a means for reducing set-recovery of compressed poplar wood since it is obvious that the use of MF significantly improved the stability of densified wood due to the formation of new bonds between cell wall components and MF. In the case of densification under stress of 10?kg/cm2, the stabilization was improved by the use of MF to about 50% compared to water-treated specimens. The effect of MF on the stabilization of densified wood was not very clear for stresses higher than 10?kg/cm2 since due to the outflow of MF solution during the first minutes of compression.  相似文献   

20.
 Gluing of wood is among the most effective methods for the permanent joining of furniture elements or building woodwork manufactured from wood. Technological errors occurring during the preparation process of the glue material may lead to variations in the strength of adhesive/wood joints. The purpose of the described research project was to investigate the effect of the heterogeneity of the glue bond on the distribution of tangential stresses in furniture joints, especially the effect of gas cavities, faulty glue bonds and glue outflows on the distribution of tangential stresses in adhesive bonded overlap, cross and angle wood joints. Using developed numerical models, it was shown that shear stresses in bonds of cross and angle joints reach their maximum values in corners of joints. The torsion center of cross joints is situated in the geometrical center of the bond, while in angle joints – it is found half-way through the length of one of the perpendicular edges of the joint. It was also proven that gas cavities present in the glue bond contribute to increased stresses in the neighbourhood of the source of heterogeneity. This phenomenon initiates a process of de-cohesion and, hence, reduces the overall strength of the joint. Faulty gluing, similar to gas cavities, constitutes a potential source of stress-breaking processes and reduces the strength of joints. On the other hand, glue outflows present in wood bonds increase their strength by expanding the initiation threshold of fractures even in situations where technological heterogeneity of the glue bond occurs. In furniture constructions as well as in large-size building woodwork constructions or, wherever grace and elegance of the finished product is of lesser importance, glue outflows can be treated as a positive and desirable phenomenon. Received 13 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号