首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H2-oxidizing activities were assayed in slurries of four soils by measuring the consumption of H2 and the exchange of 3H2 with H2O at increasing mixing ratios of H2 or 3H2. Both H2 consumption and 3H2 exchange were abolished by autoclaving or the addition of formaldehyde. The rates of H2 consumption and 3H2 exchange were proportional to the quantity of soil used. Both activities increased with increasing concentrations of H2 or 3H2 and displayed biphasic kinetics, demonstrating the existence of two different H2-oxidizing activities, one with a relatively low K m and V max, and a second with a relatively high K m und V max. The first type of activity was characteristic of abiontic soil hydrogenases, and the second of aerobic H2-oxidizing bacteria. In contrast to H2 consumption, which required the presence of either O2 or ferricyanide, 3H2 exchange operated equally well without an external electron acceptor. The 3H2 exchange assay may thus be particularly useful for enrichment of soil hydrogenases which have not yet been isolated and for which no natural electron acceptor is known.  相似文献   

2.
Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.  相似文献   

3.
There is limited knowledge about the consumption and interaction of methane (CH4) and ethylene (C2H4) in forest soils under disturbances of temperature and acidification. Temperate volcanic forest topsoils (0‐5 cm) sampled under different tree species (e.g. Pinus sylvestris, Cryptomeria japonica and Quercus serrata) were used to study the capacities for CH4 and C2H4 consumption and their sensitivity to temperature and pH. We also studied the responses of soil nitrogen (N) transformations to temperature and relationships to consumption of both CH4 and C2H4. The C2H4 consumption rates increased with temperature up to 35oC, whereas the optimum temperature for CH4 consumption rates was approximately 25oC. Both Q10 values and activation energies for CH4 consumption rates over the range 5 to 25oC were larger than corresponding values for C2H4 consumption rates. The rates of nitrous oxide (N2O) and nitric oxide (NO) evolution and net N mineralization in the soils increased exponentially with temperature up to 35oC, with relatively large Q10 values and activation energies for NO evolution. In these forest topsoils, rates of CH4 and C2H4 consumption at pH < 4.0 were negligible, and the pH optimum for both consumptions varied from 5.5 to 6.2. Most of the tested forest soils had an optimum pH for CH4 and C2H4 consumption that was above natural pH values, which indicated that soil acidification would inhibit CH4 and C2H4 consumption in situ. There was a high rate of net C2H4 evolution from forest soils acidified experimentally to pH < 4.0, particularly from Cryptomeria japonica forest soil, and 67% of the variation in C2H4 evolution rates could be accounted for by the increase in soil water‐soluble organic carbon concentrations. Previous studies have shown that addition of C2H4 in headspace gases can inhibit atmospheric CH4 consumption in such forest soils. Hence, the evolution of C2H4 from temperate volcanic forest soils at decreasing pH can exacerbate inhibition of the soil atmospheric CH4 consumption in situ.  相似文献   

4.
 Soils are the dominant sink in the global budget of atmospheric H2, and can be an important local source of atmospheric CO. In order to understand which soil characteristics affect the rates of H2 consumption and CO production, we measured these activities in 16 different soils at 30% and 60% of their maximum water holding capacity (whc). The soils were obtained from forests, meadows and agricultural fields in Germany and exhibited different characteristics with respect to texture, pH, total C, substrate-induced respiration (SIR), respiration, total and inorganic N, N mineralization, nitrification, N2O production and NO turnover. The H2 consumption rate constants were generally lower at 60% than at 30% whc, whereas the CO production rates were not influenced by the whc. Spearman correlation analysis showed that H2 consumption correlated significantly (r>0.5, P<0.05) at both water contents only with SIR and potential nitrification. The correlation with these variables that are largely dominated by soil microorganisms is consistent with our understanding that atmospheric H2 is oxidized by soil hydrogenases. Multiple regression analysis and factor analysis gave similar results. Production of CO, on the other hand, was significantly correlated to soil total C, respiration, total N and NH4 +. The correlation with these variables that are largely dominated by a soil's chemical composition is consistent with our understanding that CO is produced by chemical oxidation of soil organic C. CO production was also influenced by soil usage, with rates increasing in the order: arable<meadow<forest. H2 consumption was not influenced by soil usage. Received: 28 October 1999  相似文献   

5.
To date our knowledge is limited with regard to the cycling of ethylene (C2H4) in temperate forest soils containing volcanic ash, and the effect of forest‐to‐orchard conversion on its cycling. We studied ethylene accumulation in such forest soils by oxic and anoxic incubations, along with the stimulatory effect of glucose addition on soil C2H4 accumulation. We also studied the effect of antibiotics and autoclaving on C2H4 production and consumption by volcanic forest soils, and the cycling of C2H4 and CH4 in surface soils after conversion of a Japanese cedar forest to an orchard. Ethylene production and consumption by forest surface soils results from a microbial process, and soil streptomycin‐sensitive bacteria make a minor contribution. Soil C2H4 accumulation was much larger during anoxic than during oxic incubation, which indicates that anoxic conditions can induce C2H4 accumulation in forest soils. Glucose addition as a carbon source can sharply increase C2H4 accumulation rates in the anoxic and oxic forest soils during the first week of incubation. However, there was no difference in total C2H4 accumulation in the amended and non‐treated soils after 35 days of anoxic incubation. Ethylene production of the 0–5 cm and 5–10 cm soils beneath forest and orchard showed the greatest rate after 2 weeks of anoxic incubation when soil CH4 production started to increase sharply, and later it was strongly suppressed. The forest‐to‐orchard conversion showed little influence on the CH4 production of surface soils during short‐term anoxic incubation, but significantly reduced soil C2H4 production. The conversion also significantly decreased the consumption of soil CH4 and C2H4, the former more than the latter. Soil properties such as total C, water‐soluble organic C and pH contribute to the consumption and production of C2H4 in the 0–5 cm and 5–10 cm soils, and there are the parallels between CH4 and C2H4 consumption in soils, which suggests the presence of similar microorganisms. Long‐term anoxic conditions of in situ surface upland soils are normally not prevalent, so it can be reasonably concluded that there is a larger C2H4 accumulation rather than CH4 accumulation in surface soils beneath forest and orchard after heavy rainfall, especially beneath forest.  相似文献   

6.
Two problems with the recently suggested method to measure endogenous formation of C2H4 in an atmosphere enriched with C2H2 and CO in studies of N2ase activity (C2H2) in forest soils were analysed, namely the effect of consumption of CO during incubation and the effect of water-saturated conditions.After an initial addition of 100 ml C2H2 and 20 ml CO 1?1 to soil incubation vessels, CO was gradually consumed and followed by a recovery of N2ase activity when the concentration of CO was lower than about 10 ml 1?1. The shortest period within which this concentration was achieved was 1 day when incubating fresh soil cores at 15°C, and it was concluded that longer incubations should be avoided.The inhibition of N2ase activity by CO was strongly suppressed when all soil pores were filled with water. Dissolved inorganic N (0.1% of dry mass soil) was much more efficient in inhibiting N2ase activity under such conditions.  相似文献   

7.
The decomposition of atmospheric hydrogen in different types of soil was measured. The decomposition of H2 was apparently a first-order reaction. H2 decomposition activity was proportional to the amount of soil with maximum activities at soil water contents of approx. 6–11% (w/w). The activity was lower under anaerobic conditions, but was constant between 1–20% O2. It was destroyed by autoclaving and was partially inactivated by fumigation with NH3, CHC13 or acetone, by u.v. irradiation and by treatment with NaCN or NaN3, indicating that biological processes in the soil were responsible for the observed H2 decomposition. Treatment of soil with toluene or CHCl3 caused only a partial inactivation. Incubation of soil in the presence of streptomycin or actidione reduced H2 decomposition by less than 50%, whereas CO consumption was abolished. The H2 decomposition rates showed H2 saturation curves with apparent Michaelis-Menten kinetics. Cooperative effects were not observed. Vmax was reached at approx. 200 μl1?1. The Km values for H2 were in the range of 30μl 1?1, but increased to higher values, when the soil had been pretreated with high H2 mixing ratios. Apparently, the observed H2 decomposition by soil is not only due to the activity of viable microorganisms, but soil enzymes as well.  相似文献   

8.
Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from the laboratory experiment show that the agricultural soil had a stronger N2O reduction potential than the forest soil, as indicated by the N2O/N2 ratio in denitrification products. Without C2H2 inhibition, N2O could reach a maximum concentration of 51 and 296 ppmv in headspace of the agricultural and forest soil slurries, respectively. Addition of glucose decreased the maximum N2O concentration to 22 ppmv in headspace of the agricultural soil slurries, but increased to 520 ppmv in the forest soil slurries. Addition of exogenous N2O did not change such N2O accumulation maxima during the incubations. The field measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha?1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under elevated N2O condition (about 300 ppmv) was found in all five agricultural field measurements, but only in three of the six forest measurements under the same conditions. Field measurements agreed with the laboratory experiment that N2O reduction activity, which plays a critical role in abating N2O emissions from soils, largely depended on soil characteristics associated with land use.  相似文献   

9.
Factors influencing C2H4 production in a silt loam were investigated in an effort to determine the source of this gas in soil. Air-dried samples of soil in glass vials were moistened to about ?10 kPa, sealed with rubber septa, and incubated at 30 or 35°C with an original atmosphere of air or O2-free N2. C2H4 concentrations in the vials were determined by gas chromatography.Addition of the antibacterial agents chloramphenicol or novobiocin to the soil inhibited C2H4 production, whereas the antifungal agent cycloheximide had no effect. Sodium azide and sodium cyanide also reduced C2H4 production. Treatment of the soil with moist heat (i.e. passing a steam-air mixture through it) at 80°C for 30 min failed to reduce the ability of the soil to produce C2H4 during subsequent incubation at 30°C, but autoclaving it twice at 121°C prevented C2H4 production. As with nonheated soil, C2H4 production from soil treated at 80°C was prevented by novobiocin but not by cycloheximide. Only about 10% of the bacteria isolated from nontreated soil were spore-formers. In contrast, 95–98% and possibly more of the bacteria isolated from heat-treated soil were spore-formers, including those in soil which was heat-treated and then incubated moist at 30°C for an additional 3 days before dilution plating. Addition of methionine had no effect on the production of C2H4 in anaerobic soil, whereas ethionine, chlorogenic acid, and ethylenediaminetetraacetic acid (EDTA) all enhanced C2H4 production. Ethionine, but not chlorogenic acid or EDTA, also resulted in considerable C2H4 accumulation in autoclaved soil; the C2H4 detected in ethionine-amended soil was apparently nonmicrobial in origin. Soil samples incubated at constant temperatures of 30, 50, or 70°C all produced C2H4.The results collectively indicate that C2H4 in soil is most likely produced by facultative or strictly anaerobic bacteria which are probably spore-formers and may also be thermophilic. Several isolates of spore-forming bacteria were inoculated into autoclaved soil, but none produced appreciable amounts of C2H4 under the test conditions.  相似文献   

10.
The influence of moisture level, light, aeration, and glucose upon C2H2 reduction by a clay soil was studied. C2H2 reduction was greater in 15 g samples of the air-dried soil moistened with 9 ml water than in samples moistened with 5 ml water. Illumination of the soil led to significantly more C2H2 reduction than when the soil samples were incubated in the dark. The addition of glucose to the soil increased C2H2 reduction. C2H2 reduction by soil samples incubated under an aerobic gas phase (either Ar + O2, 80; 20; or air) was not significantly different from that of samples incubated under an anaerobic gas phase (Ar). Several questions regarding the use of the C2H2 reduction technique in assessing nitrogen fixation by natural ecosystems are raised.  相似文献   

11.
Nitrogen monoxide production and consumption in an organic soil   总被引:2,自引:0,他引:2  
 Factors controlling NO production, consumption, and emission rates were examined in an organic soil. Emission rates were measured in the enclosed headspaces of intact soil cores under three fertilisation treatments (unfertilised or 100 kg N ha–1 as NH4Cl or as NaNO3), with and without the nitrification inhibitor C2H2 (20–70 μl l–1). Nitrification was always the main source of NO emitted across the soil surface, even when the soil was nearly saturated. Fertilisation of soil with NH4Cl increased NO emission both by stimulating NO production from nitrification, and by decreasing the NO consumption rate constant. Addition of NaNO3 also stimulated the production of NO and N2O during nitrification in aerobic soil slurry experiments. This effect was eliminated by adding C2H2 and was therefore not related to denitrification. In loose soil samples, the increase in NO-N production after NH4Cl addition represented as much as 26% of the added N. However, in intact cores, 95% of the NO produced through nitrification was oxidised within the soil column rather than emitted to the atmosphere. We concluded that nitrification is the primary NO source from this organic soil, that surface NO emissions are much lower than gross NO production rates, and that gaseous N oxide (NO and N2O) losses during nitrification can be affected by both soil NH4 + and NO3 . Received: 15 December 1998  相似文献   

12.
The effects of H2 gas treatment of an agricultural soil cultivated previously with a mixture of clover (Trifolium pratense) and alfalfa (Medicago sativa) on CO2 dynamics and microbial activity and composition were analyzed. The H2 emission rate of 250 nmol H2 g−1 soil h−1 was similar to the upper limit of estimated H2 amounts emitted from N2 fixing nodules into the surrounding soil ([Dong, Z., Layzell, D.B., 2001. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soil. Plant and Soil 229, 1-12.]). After 1 week of H2 supply to soil samples simultaneously with H2 uptake net CO2 production declined continuously and this finally led to a net CO2 fixation rate in the H2-treated soil of 8 nmol CO2 g−1 soil h−1. The time course of H2 uptake and CO2 fixation in the soils corresponded with an increase in microbial activity and biomass of the H2-treated soil determined by microcalorimetric measurements, fluorescence in situ hybridization analysis (FISH) and DNA staining (DAPI). Shifts in the bacterial community structure caused by the supply of H2 were recorded. While the H2 treatment stimulated β-and γ-subclasses of Proteobacteria, it had no significant effect on α-Proteobacteria. In addition, FISH-detectable bacteria of the Cytophaga-Flavobacterium-Bacteroides phylum increased in numbers.  相似文献   

13.
Temperate volcanic forest surface soils under different forest stands (e.g., Pinus sylvestris L., Cryptomeria japonica, and Quercus serrata) were sampled to study the kinetics of ethylene (C2H4) oxidation and the C2H4 concentrations that effectively inhibit oxidation of atmospheric methane (CH4) and nitrification. The kinetics of C2H4 oxidation in temperate volcanic forest soils was biphasic, indicating that at least two different microbial populations, one with low and another with high apparent K m values, were responsible for ethylene oxidation. Methane consumption activity and ammonium oxidation of soil were inhibited by adding ethylene. Added C2H4 at concentrations of 3, 10, and 20 μl C2H4 per liter in the headspace gas respectively reduced by 20%, 50%, and 100% atmospheric CH4 consumption by soil, and these values were much smaller than those inhibiting ammonium oxidation in these forest soils; thus, the CH4 consumption activity was more sensitive to the addition of C2H4 than ammonium oxidation. Previous studies have shown that accumulation of C2H4 in such volcanic forest soils within 3 days of aerobic and anaerobic incubations can reach a range from 0.2 to 0.3 and from 1.0 to 3.0 μl C2H4 per liter in the headspace gas, respectively. It is suggested that C2H4 production beneath forest floors, particularly after heavy rain, can to some extent affect the capacity of forest surface soils to consume atmospheric CH4, but probably, it has no impact on ammonium oxidation.  相似文献   

14.
Nitrous oxide emissions from a sandy-loam textured soil wetted to matric potentials of either-1.0 or-0.1 kPa were determined in laboratory experiments in which the soil was incubated in air (control), air plus 10 Pa C2H2 (to inhibit nitrification), 100 kPa O2 (to suppress denitrification), 10 kPa C2H2 (to inhibit N2O reduction to N2 in denitrification) or following autoclaving. The total N2O production, consumption and net N2O emission from the soils together with the contributions to N2O emission from different processes of N2O production were estimated. The rate of N2O production was significantly greater in the wetter soil (282 pmol N2O g-1 soil h-1) than in the drier soil (192 pmol N2O g-1 soil h-1), but because N2O consumption by denitrifiers was also greater in the wetter soil, the net N2O emissions from the wetter and the drier soils did not differ significantly. Non-biological sources made no significant contribution to N2O emission under either moisture regime and biological processes other than denitrification and nitrification made only a small contribution (1% of the total N2O production) in the wetter soil. Denitrifying nitrifiers were the predominant source of N2O emitted from the drier soil and other (non-nitrifying) denitrifiers were the predominant source of N2O emitted from the wetter soil.  相似文献   

15.
Summary The rate of H2 release from broad beans (Vicia faba) infected with Rhizobium leguminosarum Hup- was much faster than from beans infected with the Hup+ strain. Acetylene reduction and H2 release were abolished by cutting the plants down, by incubation in darkness, or after the addition of ammonium, indicating that the H2 was released by N2-fixing bacterial symbionts. In laboratory cultures using non-sterile soil, the bean plants released H2 until an equilibrium between H2 production and H2 oxidation was reached. The H2 equilibrium concentration was higher in Hup--infected bean cultures (about 3 ppm H2 in the gas phase) than in Hup+-infected cultures (0.3 ppm H2) because of the higher H2 production. The H2 release from Hup--infected bean cultures in sterile soil did not reach equilibrium. An equilibrium occurred, if Knallgas bacteria were added. However, the equilibrium value was higher (13 ppm H2) than in non-sterile soil, which seemed to be more efficient at H2 oxidation. The Knallgas bacteria exhibited a relatively high K m for H2 (> 1300 ppmv H2); this activity was observed in unplanted non-sterile soil, and in nonsterile soil planted with Hup+-infected beans or planted with Hup--infected beans which had been cut down before being assayed. All these soils also showed a second, low-K m (<50 ppm) level of H2 oxidation activity, which was presumably due to abiontic soil enzymes. In contrast, only one level of activity, which had an intermediate K m (about 200 ppm H2), was observed when the soil was planted with Hup--infected beans. The origin of this activity, which was only observed in the presence of intact, H2-producing beans, is still unknown.  相似文献   

16.

Purpose  

Acetylene (C2H2) is employed for the quantification of important biological processes such as nitrogen fixation, nitrous oxide reduction, ammonium and methane oxidation, and methanogenesis. Although acetylene is not a natural product, the ability of bacteria to grow on C2H2 is a phenomenon common to soils and sediments. Our experiment was designed to study the modification of CO2 production, O2 uptake and microbial biomass (Cmic) in soil in response to the consumption of added acetylene.  相似文献   

17.
In the C2H2-C2H4 assay for measurement of heterotrophic N2 fixation in water-logged soils, the diffusion of C2H2 into the soil and the recovery of C2H4 from it are critical factors regulating the assay result. To establish an C2H2-C2H4 assay technique suitable for waterlogged soils, the C2H2-reducing activities (ARA), assayed by varying the method of assay gas filling, the pC2H2 of the assay gas, the duration of assay incubation and of soil vibration before the gas sampling, were compared.

A maximum ARA was measured when the following set of procedures were applied to the soil sample in assay flasks: 1) a 4-fold repetition of I-min evacuation under 0.01 atmospheric pressure and the subsequent I-min filling under 1 atmospheric pressure with assay gas at pC2H2 of 0.1 atm, 2) an assay incubation for 3 hr, and 3) a sampling of an aliquot of the headspace gas after strongly vibrating the flask for 1 min.

The ARA measured by this technique was several times larger than those measured by the techniques hitherto applied, and corresponded to an almost 80% of the V max of the sample. This technique was, therefore, proposed for the assay of heterotrophic N2 fixation in waterlogged soils.

A striking depression of ARA in the soil sample prepared with agitation indicated that a microbial ecosystem established in the soil should be kept as undisturbed as possible throughout the C2H2-C2H4 assay.  相似文献   

18.
Oxygen (O2) supply and the related redox potential (EH) are important parameters for interactions between roots and microorganisms in the rhizosphere. Rhizosphere extension in terms of the spatial distribution of O2 concentration and EH is poorly documented under aerobic soil conditions. We investigated how far O2 consumption of roots and microorganisms in the rhizosphere is replenished by O2 diffusion as a function of water/air‐filled porosity. Oxygen concentration and EH in the rhizosphere were monitored at a mm‐scale by means of electroreductive Clark‐type sensors and miniaturized EH electrodes under various matric potential ranges. Respiratory activity of roots and microorganisms was calculated from O2 profiles and diffusion coefficients. pH profiles were determined in thin soil layers sliced near the root surface. Gradients of O2 concentration and the extent of anoxic zones depended on the respiratory activity near the root surface. Matric potential, reflecting air‐filled porosity, was found to be the most important factor affecting O2 transport in the rhizosphere. Under water‐saturated conditions and near field capacity up to –200 hPa, O2 transport was limited, causing a decline in oxygen partial pressures (pO2) to values between 0 and 3 kPa at the root surface. Aerobic respiration increased by a factor of 100 when comparing the saturated with the driest status. At an air‐filled porosity of 9% to 12%, diffusion of O2 increased considerably. This was confirmed by EH around 300 mV under aerated conditions, while EH decreased to 100 mV on the root surface under near water‐saturated conditions. Gradients of pO2 and pH from the root surface indicated an extent of the rhizosphere effect of 10–20 mm. In contrast, EH gradients were observed from 0 to 2 mm from the root surface. We conclude that the rhizosphere extent differs for various parameters (pH, Eh, pO2) and is strongly dependent on soil moisture.  相似文献   

19.
An 8‐month greenhouse experiment with ryegrass (Lolium perenne L.) examined the relationship between the dynamics of potassium (K) reserves in soil and changes in clay minerals, using X‐ray diffraction. The capacity of soil to release K was consistent with its ability to supply it and was the highest in the soil samples collected from Laiyang (H1T2a), Harbin (H1T1) and Beibei (H2T4), followed by the sample from Jiangyan (H1T2b), and the lowest in the samples from Gao'an (H2T3a) and Wangcheng (H2T3b). Removal of soil K decreases the intensity of reflections for illite and increases that for interstratified clay minerals. The centre of gravity values of the clay fractions was significantly negatively correlated to the depletion of soil K reserves, as ascertained through chemical extraction or through plant action. The quantitative regression equations between the centre of gravity values and the dynamics of soil reserves of K can be used for predicting the release and plant availability of K even without growing a crop. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The influence of soil organic matter on selenite sorption was investigated in the selenite adsorption capacity and the surface particle charge change by ligand exchange reaction using the hydrogen peroxide (H2O2) treatment and the ignition treatment of two Andosols. The removal of organic carbon (C) in soils accelerated selenite sorption, implying that organic matter of soils had negative influence on the selenite adsorption on the soils. Positive charge decrease on soil particles, concomitant proton consumption, and release of silicon (Si), sulfate (SO4 2‐), and organic C were observed in selenite sorption by the soils. The development of surface particle negative charge with selenite sorption was smaller in the H2O2‐treated soil than in the original soils and was scarcely observed in the ignition‐treated soil. It can be assumed that the increase of negative charge by selenite sorption was attributed to new negative sites borne by released insoluble organic matter and negative charge development directly by selenite sorption was small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号