首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the importance of desert dust at global and regional scales, its exact provenance is often unclear. The Taklimakan Desert in northwest China is a common source of high‐frequency regional dust storms and is also a large source of global dust production. On the basis of field observations and the determination of the fraction of aeolian dust in surface samples, we characterized the relative intensity of windblown sand/dust processes in the Taklimakan and the volume of dust emitted (PM10) during these processes. Major dust sources were degraded lands on the eastern desert margin, the Gobi and alluvial, fluvial and aeolian sediments occurring on the desert margin. These areas have high PM10 emission capacity due to high‐surface PM10 concentrations and intensive windblown sand/dust activity. Despite having intensive windblown sand activity, the central desert had lower PM10 dust emission capacity (<1·6 kg day−1 m−2 in spring, <0·08 kg day−1 m−2 in other seasons) due to lower surface PM10 fraction. The dry Taitema Lake bed was a source of potentially high dust emissions (at least 4·4–17 kg day−1 m−2 for the monitoring period) due to the intensity windblown sand/dust activities, despite low PM10 concentrations. The dry river beds on the southeastern desert margin had lower dust emission potential due to low PM10 concentrations and windblown sand/dust activity. Most dust emission sources lie in the paths of prevailing winds, leading to aeolian dust transported to and deposited in the desert hinterland or Hotan, Yutian and Minfeng areas, where wind stream convergence leads to high‐frequency dust storms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Cultivation of irrigated desert soils in Central Iran is one way of utilizing under‐exploited land to produce more food. This study explores the value of soil quality indicators as measures when converting desert to croplands. Soil samples from unfarmed desert, wheat and alfalfa sites in the Abarkooh Plain (Central Iran) were taken from 0–10, 10–20 and 20–30 cm depths. Soil quality indicators including organic carbon, total nitrogen, carbohydrate, particulate organic carbon (POC) in aggregate fractions, and aggregate water‐stability were determined. The desert soils contained organic carbon of 0·26–0·56 g kg−1, total nitrogen of 0·05–0·08 g kg−1 and carbohydrate of 0·03–0·11 g kg−1 at 0–30 cm depth. Across this depth, the contents of organic carbon, total nitrogen and carbohydrate in wheat were about 3–7, 2–3 and 6–26‐times higher than those of desert soils, respectively. These values for alfalfa were 5–12, 3–4 and 7–35 times, respectively. The POC (near zero in desert soils) and generally other soil quality indicators showed greater improvement in alfalfa than in wheat fields. The results indicated a significant decrease in proportion of the fraction <0·05 mm in cultivated soils, whereas the proportion of the large aggregate size classes (2–4 and 1–2 mm) was increased by irrigation and cultivation. A significant improvement in aggregate water‐stability was observed in cultivated soils. At all depths, a large portion of the total soil organic carbon was stored in the fractions <0·05 mm for desert and macroaggregates (0·25–2 mm) for cultivated soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of compost application on soil carbon sequestration potential and carbon budget of a tropical sandy soil was studied. Greenhouse gas emissions from soil surface and agricultural inputs (fertiliser and fossil fuel uses) were evaluated. The origin of soil organic carbon was identified by using stable carbon isotope. The CO2, CH4 and N2O emissions from soil were estimated in hill evergreen forest (NF) plot as reference, and in the corn cultivation plots with compost application rate at 30 Mg ha−1 y−1 (LC), and at 50 Mg ha−1 y−1 (HC). The total C emissions from soil surface were 8·54, 10·14 and 9·86 Mg C ha−1 y−1 for NF, HC and LC soils, respectively. Total N2O emissions from HC and LC plots (2·56 and 3·47 kg N2O ha−1 y−1) were significantly higher than from the NF plot (1·47 kg N2O ha−1 y−1). Total CO2 emissions from fuel uses of fertiliser, irrigation and machinery were about 10 per cent of total CO2 emissions. For soil carbon storage, since 1983, it has been increased significantly (12 Mg ha−1) under the application of 50 Mg ha−1 y−1 of compost but not with 30 Mg ha−1 y−1. The net C budget when balancing out carbon inputs and outputs from soil for NF, HC and LC soils were +3·24, −2·50 and +2·07 Mg C ha−1 y−1, respectively. Stable isotope of carbon (δ13C value) indicates that most of the increased soil carbon is derived from the compost inputs and/or corn biomass. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this study was to measure the in situ soil CO2 flux from grassland, afforested land and reclaimed coalmine overburden dumps by using the automated soil CO2 flux system (LICOR‐8100® infrared gas analyzer, LICOR Inc., Lincoln, NE). The highest soil CO2 flux was observed in natural grassland (11·16 µmol CO2 m−2s−1), whereas the flux was reduced by 38 and 59 per cent in mowed site and at 15‐cm depth, respectively. The flux from afforested area was found 5·70 µmol CO2 m−2s−1, which is 50 per cent lower than natural grassland. In the reclaimed coalmine overburden dumps, the average flux under tree plantation was found to be lowest in winter and summer (0·89–1·12 µmol CO2 m−2s−1) and highest during late monsoon (3–3·5 µmol CO2 m−2s−1). During late monsoon, the moisture content was found to be higher (6–7·5 per cent), which leads to higher microbial activity and decomposition. In the same area under grass cover, soil CO2 flux was found to be higher (8·94 µmol CO2 m−2s−1) compared with tree plantation areas because of higher root respiration and microbial activity. The rate of CO2 flux was found to be determined predominantly by soil moisture and soil temperature. Our study indicates that the forest ecosystem plays a crucial role in combating global warming than grassland; however, to reduce CO2 flux from grassland, mowing is necessary. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
王博  包玉海  刘静  李雨薇  王成龙 《土壤》2022,54(3):539-546
为阐明库布齐沙漠植被恢复过程中土壤碳通量的时空动态特征及主控因子,明确土壤有机碳含量和储量的变化趋势,本研究以流动沙地、半固定沙地、藻结皮固定沙地和地衣苔藓混合结皮固定沙地为研究对象,运用静态暗箱–气相色谱法对风沙土壤碳通量及水热因子进行观测,并对土壤有机碳含量和密度进行测定和计算。结果表明,生长季内风沙土壤碳通量变异较大,季节动态与土壤温度基本一致,且随植被恢复碳通量呈递增趋势:混合结皮固定沙地(210.28 mg/(m~2·h))>藻结皮固定沙地(177.45 mg/(m~2·h))>半固定沙地(117.34 mg/(m~2·h))>流动沙地(65.61mg/(m~2·h));土壤碳通量与各层土壤温度均显著正相关,除流动沙地土壤碳通量与深层土壤含水量显著负相关外,其余样地碳通量均与表层土壤含水量显著负相关;风沙土壤有机碳含量和密度随植被恢复而递增:混合结皮固定沙地(1.32 g/kg,0.94 kg/m~2)>藻结皮固定沙地(1.03 g/kg,0.74 kg/m~2)>半固定沙地(0.45 g/kg,0.36 kg/m~2)>流动沙地(0.27...  相似文献   

6.
Reforestation of saline sodic soil is increasingly undertaken as a means of reclaiming otherwise unproductive agricultural land. Currently, restoration of degraded land is limited to species with high tolerances of salinity. Biochar application has the potential to improve physical, biological and chemical properties of these soils to allow establishment of a wider range of plants. In a glasshouse trial, we applied biochar made from Acacia pycnantha (5 Mg ha−1) or no biochar to either a low (ECe 4·75 dS m−1, ESP 6·9), a moderate (ECe 27·6 dS m−1, ESP 29·3) or a high (ECe 49·4 dS m−1, ESP 45·1) saline sodic soil. The regional common reforestation species Eucalyptus viminalis and Acacia mearnsii were planted as tubestock in to the soils. Early establishment indicators, including growth, plant condition and nutrition, were assessed at the end of a simulated growing season, 108 days after biochar application. Application of biochar increased height, and decreased root : shoot and the concentration of Mn, N and S in plants of E. viminalis when grown in the highly saline sodic soil. Biochar application increased the concentration of B in leaves of E. viminalis and increased the concentration of P, K and S in leaves of A. mearnsii when grown in the low saline sodic soil. The results confirm that there is potential for biochar to assist in reforestation of saline sodic soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Soil organic carbon (SOC) is one of the important measures of soil fertility and sustainability in arable lands. With continuous CO2 flux measurements, this study assessed the SOC decomposition and its environmental controls at both half‐hourly and season‐long scales in a single‐crop rice (Oryza sativa L.) paddy during three fallow periods between 2004 and 2007. Measurements were made on a gray lowland soil sited in eastern Japan using the eddy covariance method. Ecosystem respiration was strongly affected by soil water content measured at 0–0·1 m depth. At 0·5 m3 m− 3 or more of soil water content, the baseline of ecosystem respiration decreased by 50% compared with that at 0·2 m3 m− 3 . The effect was quantified at half‐hourly scale using an empirical multiple regression model, together with the soil surface temperature and the time after residue incorporation. At season‐long scale, net biome production, which is equivalent to the change in the SOC pool during the fallow period, was estimated from the flux and ancillary data at 150 g C m− 2 in 2004–2005, 70 g m− 2 in 2005–2006, and 270 g C m− 2 in 2006–2007. Apparently, as much as 46 to 79% of the soil organic matter incorporated (crop residues, ratoon, and stable manure) was decomposed during the fallow period. Precipitation, or associated soil water content, was important for the carbon balance of the field at season‐long scale because of its large interannual variability and relatively low permeability of the paddy soil. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
不同水分条件下苔藓结皮光合能力对氮素添加量的响应   总被引:1,自引:1,他引:1  
[目的]探究苔藓结皮失水过程中光合能力对不同梯度氮添加的响应,为进一步研究苔藓结皮对氮沉降的响应过程以及为干旱、半干旱区荒漠生态系统的管理提供理论依据。[方法]选取毛乌素沙地的优势藓种拟双色真藓(Bryum pachytheca)为研究对象,在控制条件下采用氮添加的模拟试验手段。[结果]苔藓结皮净光合速率在低于0.2g/(m2·a)的氮添加量时受到促进,在高于0.2g/(m2·a)的氮素添加量下,低水分含量时被抑制,高水分含量时会受促进;同时,0.2g/(m2·a)是苔藓结皮能承受的最优氮添加量,此时苔藓结皮的光合固碳能力达到最大,年光合固碳量为对照条件的2倍。[结论]氮沉降引起的氮素增加对于干旱、半干旱区苔藓结皮的光合能力以及固碳潜力具有显著的影响。  相似文献   

9.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems.  相似文献   

10.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In the northern highlands of Ethiopia, establishment of exclosures to restore degraded communal grazing lands has been practiced for the past three decades. However, empirical data on the effectiveness of exclosures in restoring degraded soils are lacking. We investigated the influence of exclosure age on degree of restoration of degraded soil and identified easily measurable biophysical and management‐related factors that can be used to predict soil nutrient restoration. We selected replicated (n = 3) 5‐, 10‐, 15‐, and 20‐year‐old exclosures and paired each exclosure with samples from adjacent communal grazing lands. All exclosures showed higher total soil nitrogen (N), available phosphorus (P), and cation exchange capacity than the communal grazing lands. The differences varied between 2·4 (±0·61) and 6·9 (±1·85) Mg ha−1 for the total N stock and from 17 (±3) to 39 (±7) kg ha−1 for the available P stock. The differences in N and P increased with exclosure age. In exclosures, much of the variability in soil N (R2 = 0·64) and P (R2 = 0·71) stocks were explained by a combination of annual average precipitation, woody biomass, and exclosure age. Precipitation and vegetation canopy cover also explained much of the variability in soil N (R2 = 0·74) and P (R2 = 0·52) stocks in communal grazing lands. Converting degraded communal grazing lands into exclosures is a viable option to restore degraded soils. Our results also confirm that the possibility to predict the changes in soil nutrient content after exclosure establishment using regression models is based on field measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The application of fractal geometry to describe soil degradation and dynamics is becoming a useful tool for better understanding of the performance of soil systems. In this study, four different land cover types, which represent a sequence of grass–desert shrub transition and a gradient of desertification, were selected, and soils at depths of 0–10, 10–20 and 20–40 cm were sampled in the Ordos Plateau of Inner Mongolia, PR China. The fractal theory was used to analyse the soil particle‐size distribution (PSD) and its variations. The results showed that (i) vegetation conversion and desertification significantly changed the soil PSD. During the desertification process, soil coarse fractions that ranged from 250 to 100 µm significantly increased, whereas fine fractions lower than 50 µm significantly decreased (p < 0·01); (ii) fractal model of the accumulative volume particle‐size distribution is appropriate, and fractal dimensions (Dm) of soil PSD significantly decreased along the sequence of grass–desert shrub transition; (iii) Dm is more sensitive to the desertification process, and therefore, we suggest Dm other than soil texture and soil organic carbon as a reliable parameter to reflect the soil environment change induced by desertification. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Agricultural soils are considered to have great potential for carbon sequestration through land‐use change. In this paper, we compiled data from the literatures and studied the change in soil organic carbon (SOC) following the ‘Grain‐for‐Green’ Programme (GGP, i.e., conversion from farmland to plantation, secondary forests and grasslands) in China. The results showed that SOC stocks accumulated at an average rate of 36·67 g m−2 y−1 in the top 20 cm with large variation. The current SOC storage could be estimated using the initial SOC stock and year since land use transformation (Adjusted R2 = 0·805, p = 0·000). After land use change, SOC stocks decreased during the initial 4–5 years, followed by an increase after above ground vegetation restoration. Annual average precipitation and initial SOC stocks had a significant effect (p < 0·05) on the rate of change in SOC, while no significant effects were observed between plantation and natural regeneration (p > 0·05). The ongoing ‘Grain‐for‐Green’ project might make significant contribution to China's carbon sequestration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
沙漠人工植被区的建立有助于生物结皮的形成和发育,它将显著改变植被区土壤的持水性能和蒸发过程。利用室内蒸发法研究了流沙和沙漠植被区生物结皮类土壤的蒸发特性。结果表明,随固沙年限的延长生物结皮层及其下的亚土层逐年增厚、容重下降、土壤持水能力增加,且苔藓结皮优于藻类结皮。当土壤样品完全饱和后,生物结皮土壤的蒸发量明显高于流沙,苔藓结皮高于藻类结皮,并随固沙年限的延长而增加;但是蒸发过程表现出明显的阶段性(P〈0.05)。在蒸发的第一阶段(速率稳定阶段),与流沙相比生物结皮的存在有利于蒸发;但在蒸发的第二阶段(速率下降阶段)生物结皮却抑制蒸发。分析后认为,正是生物结皮具有较高的持水能力,在蒸发的第一阶段增加了水分被蒸发的可能性;当土壤干旱时,结皮可以将水分束缚在土壤中从而抑制了蒸发。  相似文献   

16.
 探讨不同土壤水分条件下光辐射强度对侧柏和油松苗木光合特性与水分利用效率的影响规律,可为林木栽培和管理提供科学依据。在黄土半干旱区,采用人工控制土壤水分的方法,利用模拟光源研究了侧柏和油松苗木的净光合速率、蒸腾速率、水分利用效率和胞间CO2浓度随模拟光辐射增强的变化规律。结果表明:在模拟光辐射为0~2200μmol/(m2.s)的范围内,侧柏和油松叶片的净光合速率、蒸腾速率和水分利用效率均随光辐射强度的增强而增大,但光辐射强度进一步增强,侧柏和油松净光合速率和水分利用效率呈下降趋势;在同样土壤水分条件下,侧柏净光合速率、蒸腾速率和水分利用效率高于油松,侧柏光饱和点高于油松,而侧柏光补偿点低于油松,侧柏光能利用率高于油松;随着土壤水分的增加,侧柏与油松净光合速率、蒸腾速率和胞间CO2浓度升高,而水分利用效率降低。在土壤含水量为7.90%、13.00%和19.99%条件下,侧柏光饱和点分别为1275、1 450和1 675μmol/(m2.s),光补偿点分别为4225和13μmol/(m2.s),由光饱和点对应最大净光合速率分别为3.04、4.06和5.53μmol/(m2.s);在土壤含水量为7.83%1、3.04%与20.15%条件下,油松光饱和点分别为11001、325和1500μmol/(m2.s),光补偿点分别为60.30和23μmol/(m2.s),由光饱和点对应最大净光合速率分别为1.08、3.35和4.36μmol/(m2.s)。  相似文献   

17.
Agricultural activities emit greenhouse gases (GHGs) and contribute to global warming. Intensive plough tillage (PT), use of agricultural chemicals and the burning of crop residues are major farm activities emitting GHGs. Intensive PT also degrades soil properties by reducing soil organic carbon (SOC) pool. In this scenario, adoption of no‐till (NT) systems offers a pragmatic option to improve soil properties and reduce GHG emission. We evaluated the impacts of tillage systems (NT and PT) and wheat residue mulch on soil properties and GHG emission. This experiment was started in 1989 on a Crosby silt loam soil at Waterman Farm, The Ohio State University, Columbus, Ohio, USA. Mulching reduced soil bulk density and improved total soil porosity. More total carbon (16.16 g kg−1), SOC (8.36 mg L−1) and soil microbial biomass carbon (152 µg g−1) were recorded in soil under NT than PT. Mulch application also decreased soil temperature (0–5 cm) and penetration resistance (0–60 cm). Adoption of long‐term NT reduced the GHG emission. Average fluxes of GHGs under NT were 1.84 g CO2‐C m−2 day−1 for carbon dioxide, 0.07 mg CH4‐C m−2 day−1 for methane and 0.73 mg N2O‐N m−2 day−1 for nitrous oxide compared with 2.05 g CO2‐C m−2 day−1, 0.74 mg CH4‐C m−2 day−1 and 1.41 mg N2O‐N m−2 day−1, respectively, for PT. Emission of nitrous oxide was substantially increased by mulch application. In conclusion, long‐term NT reduced the GHG emission by improving the soil properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A life cycle assessment with carbon (C) as the reference unit was used to balance the benefits of land preparation practices of establishing tall‐grass prairies as a crop for reclaimed mine land with reduced environmental damage. Land preparation and management practices included disking with sub‐soiling (DK‐S), disking only (DK), no tillage (NT), and no tillage with grazing (NT‐G). To evaluate the C balance and energy use of each of the land preparations, an index of sustainability (Is = CO/CI, Where: CO is the sum of all outputs and CI is the sum of all inputs) was used to assess temporal changes in C. Of the four land preparation and management practices, DK had the highest Is at 8·53. This was due to it having the least degradation of soil organic carbon (SOC) during land‐use change (−730 kg ha−1 y−1) and second highest aboveground biomass production (9,881 kg ha−1). The highest aboveground biomass production occurred with NT (11,130 kg ha−1), although SOC losses were similar to DK‐S, which on average was 2,899 kg ha−1 y−1. The Is values for NT and DK‐S were 2·50 and 1·44, respectively. Grazing from bison reduced the aboveground biomass to 8,971 kg ha−1 compared with NT with no grazing, although stocking density was low enough that Is was still 1·94. This study has shown that converting from cool‐season forage grasses to tall‐grass prairie results in a significant net sink for atmospheric CO2 3 years after establishment in reclaimed mine land, because of high biomass yields compensating for SOC losses from land‐use change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Reclamation of disturbed soils is done with the primary objective of restoring the land for agronomic or forestry land use. Reclamation followed by sustainable management can restore the depleted soil organic carbon (SOC) stock over time. This study was designed to assess SOC stocks of reclaimed and undisturbed minesoils under different cropping systems in Dover Township, Tuscarawas County, Ohio (40°32·33′ N and 81°33·86′ W). Prior to reclamation, the soil was classified as Bethesda Soil Series (loamy‐skeletal, mixed, acid, mesic Typic Udorthent). The reclaimed and unmined sites were located side by side and were under forage (fescue—Festuca arundinacea Schreb. and alfa grass—Stipa tenacissima L.), and corn (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation. All fields were chisel plowed annually except unmined forage, and fertilized only when planted to corn. The manure was mostly applied on unmined fields planted to corn, and reclaimed fields planted to forage and corn. The variability in soil properties (i.e., soil bulk density, pH and soil organic carbon stock) ranged from moderate to low across all land uses in both reclaimed and unmined fields for 0–10 and 10–20 cm depths. The soil nitrogen stock ranged from low to moderate for unmined fields and moderate to high in some reclaimed fields. Soil pH was always less than 6·7 in both reclaimed and unmined fields. The mean soil bulk density was consistently lower in unmined (1·27 mg m−3 and 1·22 mg m−3) than reclaimed fields (1·39 mg m−3 and 1·34 mg m−3) planted to forage and corn, respectively. The SOC and total nitrogen (TN) concentrations were higher for reclaimed forage (33·30 g kg−1; 3·23 g kg−1) and cornfields (21·22 g kg−1; 3·66 g kg−1) than unmined forage (17·47 g kg−1; 1·98 g kg−1) and cornfield (17·70 g kg−1; 2·76 g kg−1). The SOC stocks in unmined soils did not differ among forage, corn or soybean fields but did so in reclaimed soils for 0–10 cm depth. The SOC stock for reclaimed forage (39·6 mg ha−1 for 0–10 cm and 28·6 mg ha−1 for 10–20 cm depths) and cornfields (28·3 mg ha−1; 32·2 mg ha−1) were higher than that for the unmined forage (22·7 mg ha−1; 17·6 mg ha−1) and corn (21·5 mg ha−1; 26·8 mg ha−1) fields for both depths. These results showed that the manure application increased SOC stocks in soil. Overall this study showed that if the reclamation is done properly, there is a large potential for SOC sequestration in reclaimed soils. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号