首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Vineyards represent one of the most erosion‐prone types of cultivated land. Because of this, cultivation practices are very important in reducing the soil erosion risk in vineyard regions. The aim of this paper was to assess the impact of various management practices on soil loss in vineyards. Effects of tillage, hoeing, rotavating and grass cover were evaluated in small vineyards located in southwestern Slovakia in the Vráble viticultural district. Erosion and deposition rates were estimated using the levelling method. This method is based on an evaluation of variability of the soil surface against vineyard poles measured between the year of pole insertion and the year of measurement. On the basis of the measured data, a WATEM/SEDEM distributed soil erosion model was calibrated, and the total soil loss from the vineyards under different management conditions was estimated. The model shows rather good performance in modelling soil erosion, but at the same time, it shows lower reliability in modelling soil deposition. Downslope tilled vineyards were the most eroded; the erosion in rotavated vineyards is somewhat reduced. The most protective tillage system is hoeing. Considerably lower soil loss was estimated with the use of vegetation cover between vine rows, which is in accordance with agro‐environmental schemes supporting use of grass cover as an erosion prevention measure in vineyards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley‐cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and (iii) barley‐cultivated land without soil bund (Bc). For 3 years (2007–2009), the effect of soil bunds on runoff, losses of soil and nutrients, and crop productivity was studied. Daily runoff and soil and nutrient losses were measured for each treatment using standard procedures while barley yield was recorded from the cultivated plots. The results showed that Sb brought about significant reduction in runoff and soil losses. Plots with Sb reduced the average annual runoff by 28 per cent and the average annual soil loss by 47 per cent. Consequently, Sb reduced losses of soil nutrients and organic carbon. However, the absolute losses were still high. This implies the need for supplementing Sb with biological and agronomic land management measures to further control soil erosion. Despite these positive impacts on soil quality, Sb do not increase crop yield. Calculated on a per‐hectare basis, Sb even reduce crop yield by about 7 per cent as compared with control plots, which is entirely explained by the reduction of the cultivable area by 8·6 per cent due to the soil bunds. Suitable measures are needed to compensate the yield losses caused by the construction of soil bunds, which would convince farmers to construct these land management measures that have long‐term beneficial effects on erosion control. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports the results of an investigation of the erosional response of the 3·86 km2 Zhaojia Gully catchment in the rolling loess plateau region of Zichan County, Shaanxi Province, China. In the absence of direct measurements, information derived from reservoir deposits and from caesium-137 measurements on both the catchment soils and reservoir deposits was used to obtain a retrospective assessment of the longer-term (ca. 30 year) erosional response of the catchment and of the relative contributions of the rolling plateau surface and the gully areas to the sediment output from the basin. Net erosion rates on cultivated land occupying the gentle crest slopes and steeper lower slopes of the rolling plateau and the steep gully slopes were estimated to be 4500 t km−2 year−1, 8584 t km−2 year−1 and 15851 t km−2 year−1, respectively. Estimates of annual sediment yield from the study catchment based on analysis of sediment deposits in the two sediment-trap reservoirs ranged between 4627 and 32472 t km−2 year−1. Almost all the sediment transported from the catchment was contributed by 2–4 large floods each year. Measurements of the caesium-137 content of recent sediment deposits in a sediment-trap reservoir allowed the relative contributions of the total sediment yield derived from the rolling plateau and gully areas of the catchment to be estimated at 23 and 77 per cent, respectively. Analysis of the sediment deposits dating from 1973–1977 in another sediment trap reservoir allowed individual flood event couplets to be identified and indicated that the sediment associated with the first one or two floods in a season, when the soils of the plateau area were relatively dry, was derived primarily from the gully areas. The cultivated soils of the rolling plateau contributed an increased proportion of the total sediment yield during the latter stages of the flood season when the soils were wetter, and surface runoff and erosion were more widespread. Based on analysis of the caesium-137 content of the sediment deposited in this sediment-trap reservoir, the relative contributions of sediment from the rolling plateau and gully areas over the period 1973–1977 were estimated to be 21 and 79 per cent, respectively. The results obtained demonstrate the potential for using caesium-137 measurements and analysis of reservoir deposits to document the erosional response of a drainage basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the adoption of bench terraces by applying a three‐stage analysis using data from 301 households in the highlands of Rwanda. Ongoing adoption of bench terraces is ‘unpacked’ to consider both adopters willing to retain and increase the intensity of using terraces already constructed and new adopters willing to develop new bench terraces. Results suggest that farmers' inability to maintain existing terraces may explain the reluctance to adopt new terraces. The same inability explains why some of the terraces constructed earlier are not well maintained and fully used by farmers in northern and southern Rwanda. Policy actions aimed at improving farmer's capacity to invest in complementary inputs will sustain future generations of soil and water conservation measures in Rwanda. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Several decades of intensive dry land farming in the Gadarif region, located in the Eastern part of Sudan, has led to rapid land use/land cover (LULC) changes mainly due to agricultural expansion, government policies and environmental calamities such as drought. In this paper, an attempt has been made to analyse and monitor the LULC changes using multi‐temporal Landsat data for the years 1979, 1989 and 1999 and ASTER data for the year 2009. In addition, efforts were made to discuss the impact of LULC changes on the selected soil properties. For this, a post‐classification comparison technique was used to detect LULC changes from satellite images. Primarily, three main LULC types were selected to investigate the properties of soil, namely, cultivated land, fallow land and woodland. Moreover, soil samples were also collected at two depths of surface soil from ten sample plots for each of the LULC type. For these soil samples, various soil properties such as texture, bulk density, organic matter, soil pH, electrical conductivity, sodium adsorption ratio, phosphorous and potassium were analysed. The results showed that a significant and extensive change of LULC patterns has occurred in the last three decades in the study area. Further, laboratory tests revealed that soil properties were significantly affected by these LULC changes. The change of the physical and chemical properties of the soil may have attributed to the changes in the LULC resulting in land degradation, which in turn has led to a decline in soil productivity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
石辉  李占斌  赵晓光 《核农学报》2003,17(5):396-399
本文对利用铀 ( 2 3 8U)钍 ( 2 3 2 Th)衰变系列中的子体和母体研究泥沙来源和沉积、侵蚀速率的基本原理及应用进行了综述  相似文献   

8.
通过同位素稀释高分辨率气相色谱-质谱方法(HRGC/HRMS)对长江三角洲地区某典型污染区农田土壤中多氯代二苯并二英(PCDDs)/呋喃(PCDFs)组成、含量及毒性当量进行了初步研究。结果表明,该地区农田土壤中PCDD/Fs总含量的平均值达2639·1pgg-1dw,并检测出PCDD/Fs的四氯~八氯多种异构体。根据世界卫生组织毒性当量(TEQ,哺乳动物)计算结果显示,农田土壤中PCDD/Fs的毒性当量为TEQ20·8~21·3pgg-1dw,超过加拿大国家居住环境土壤二英含量控制标准的5倍多,其中2,3,4,7,8-PCDF和1,2,3,7,8-PCDD对PCDD/Fs的TEQ值贡献最大。该地区农田土壤中已经出现一定程度的二英/呋喃污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号