首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Vigna vexillata is a wild cross‐incompatible relative of cowpea. It is highly resistant to several diseases and pests plaguing cowpea. A linkage map was developed for V. vexillata comprising 120 markers, including 70 random amplified polymorphic DNAs, 47 amplified fragment length polymorphisms, one simple sequence repeat and two morphological traits namely, the cowpea mottle carmovirus resistance locus (CPMo V) and leaf shape (La), utilizing an F2 generation of the intra‐specific cross Tvnu 1443’× Tvnu 73′. The genetic map comprised 14 linkage groups spanning 1564.1 cM of the genome. Thirty‐nine quantitative trait loci (QTLs) associated with nine traits were detected on the linkage map, explaining between 15.62 and 66.58% of their phenotypic variation. Seven chromosomal intervals contained QTLs with effects on multiple traits.  相似文献   

2.
C. A. Fatokun 《Euphytica》1991,54(2):137-140
Summary Attempts were made to cross a wild profusely hairy cowpea (Vigna vexillata) with other cowpea types (both cultivated and non-cultivated) for the purpose of transferring gene(s) for hairiness from the wild to the cultivated genepool. No hybrid was however obtained.  相似文献   

3.
This study investigated the inheritance of resistance to Fusarium oxysporum f.sp. tracheiphilum (Fot) in cowpea lines. Resistant and susceptible cowpea lines were crossed to develop F1, F2 and backcross populations. Reaction to Fot was evaluated in 2015 and 2016 using seed soak and modified root‐dip inoculation methods. The expression of resistance reaction in the F1 and segregation in F2 generations indicated the role of dominant gene controlling Fot in cowpea. These results were further supported by the result of backcross (BC1P1F1 and BC1P2F1) progeny tests. The backcross of F1 with the resistant parent produced progeny that were uniformly resistant, whereas backcross of F1 with the susceptible parent produced progeny that segregated into 1:1 ratio. The F2 segregation ratio in the reciprocal cross showed no evidence of maternal effect in the inheritance of the resistance. Allelism test suggests that the gene for resistance in TVu 134 was the same in TVu 410 and TVu 109‐1. We also identified an SSR marker, C13‐16, that cosegregated with the gene conferring resistance to Fot in cowpea.  相似文献   

4.
A recombinant inbred line (RIL) mapping population (F8) was generated by crossing Vigna mungo (cv. TU 94‐2) with Vigna mungo var. silvestris and screened for mungbean yellow mosaic virus (MYMV) resistance. The inter simple sequence repeat (ISSR) marker technique was employed to identify markers linked to the MYMV resistance gene. Of the 100 primers screened, 54 showed amplification of which 36 exhibited polymorphism between the parents TU 94‐2 (resistant) and V. mungo var. silvestris (susceptible). Individual plants from 53 RIL populations were analysed and one marker (ISSR8111357) was identified as tightly linked to the MYMV resistant gene at 6.8 cM. Both the phenotype as well as the ISSR8111357 marker segregated in a 1 : 1 ratio. The ISSR8111357 marker was sequenced and sequence characterized amplified region (SCAR) primers were designed (YMV1‐F and YMV1‐R) to amplify the marker. Screening for the SCAR marker in the RIL population distinguished the MYMV resistant and susceptible plants, agreeing well with the phenotypic data. The ISSR8111357 marker was validated using diverse blackgram genotypes differing in their MYMV reaction. The marker will be useful for the development of MYMV‐resistant genotypes in blackgram.  相似文献   

5.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

6.
Historically, conventional breeding has been the primary strategy used to develop a number of Striga‐resistant varieties currently grown in the Sahel of Western Africa. In this study, we have successfully developed and applied a marker‐assisted selection strategy that employs a single backcross programme to introgress Striga resistance into farmer preferred varieties of cowpea for the Nigeria savannas. In this strategy, we have introduced the Striga resistance gene from the donor parent IT97K‐499‐35 into an elite farmer preferred cowpea cultivar ‘Borno Brown’. The selected 47 BC1F2 populations confirmed the recombinants with desirable progeny having Striga resistance gene(s). The 28 lines selected in the BC1F2:4 generation with large seed size, brown seed coat colour and carrying marker alleles were evaluated in the field for resistance to Striga resistance. This led to the selection of a number of desirable improved lines that were immune to Striga having local genetic background with higher yield than those of their parents and standard varieties.  相似文献   

7.
P. Somta    A. Kaga    N. Tomooka    K. Kashiwaba    T. Isemura    B. Chaitieng    P. Srinives    D. A. Vaughan 《Plant Breeding》2006,125(1):77-84
To facilitate transfer of bruchid resistance to azuki bean (Vigna angularis) from its relatives an interspecific mapping population was made between rice bean, V. umbellata, and the related wild species V. nakashimae. The V. umbellata parent is completely resistant and V. nakashimae is completely susceptible to the bruchid beetle pests, azuki bean weevil (Callosobruchus chinensis) and cowpea weevil (C. maculatus). There is very low cross compatibility between V. umbellata and azuki bean. Therefore, V. nakashimae, that crosses with both V. umbellata and V. angularis without the need for embryo rescue, is used as a bridging species. A genetic linkage map was constructed based on an interspecific F2 mapping population between V. umbellata and V. nakashimae consisting of 74 plants. A total of 175 DNA marker loci (74 RFLPs and 101 SSRs) were mapped on to 11 linkage groups spanning a total length of 652 cM. Segregation distortion was observed but only three markers were not linked to any linkage group due to severe segregation distortion. This interspecific genome map was compared with the genome map of azuki bean. Of 121 common markers on the two maps, 114 (94.2%) were located on the same linkage groups in both maps. The marker order was highly conserved between the two genome maps. Fifty F2 plants that produced sufficient seeds were used for quantitative trait locus (QTL) analysis and locating gene(s) for C. chinensis and C. maculatus resistance in V. umbellata. The resistance reaction of these F2 plants differed between C. chinensis and C. maculatus. Both resistances were quantitatively inherited with no F2 plants completely susceptible to C. chinensis or C. maculatus. One putative QTL for resistance to each of these bruchid species was located on different linkage groups. Other putative QTLs associated with resistance to both C. chinensis and C. maculatus were localized on the same linkage group 1. Linked markers associated with the bruchid‐resistant QTL will facilitate their transfer to azuki bean breeding lines.  相似文献   

8.
Summary Restriction fragment length polymorphism (RFLP) analysis has several advantages over traditional methods of genetic linkage mapping, one of these being the starting point for map-based cloning. The recent development of an RFLP map of cowpea (Vigna unguiculata L. Walp) has allowed the investigation of associations between genes of interest and RFLP markers. A cross between an aphid (Aphis craccivora Koch) resistant cultivated cowpea, TT84S-2246-4, and an aphid susceptible wild cowpea, NI 963, was screened for both aphid phenotype and RFLP marker segregation. One RFLP marker, bg4D9b, was found to be tightly linked to the aphid resistance gene (Rac 1) and several flanking markers in the same linkage group (linkage group 1) were also identified. The close association of Rac 1 and RFLP bg4D9b presents a real potential for cloning this insect resistance gene.  相似文献   

9.
P1, P2, F1, F2, BC1 and BC2 generations of four resistant × susceptible crosses and three resistant × resistant crosses of cowpea (Vigna unguiculata L. Walp) were screened for resistance to cowpea severe mosaic virus (CPSMV), in an insect protected screen house. The segregation ratio, at maturity, showed a 63 susceptible : 1 resistant ratio in the F2 generation indicating that resistance is governed by three major genes. The backcross tests and the F3 test confirmed this. The intermediate levels of symptoms observed in the F1 generation and the progression of symptom expression in the F2 generation suggested that resistance is gene dosage dependent. The genetic basis of immunity, tolerance, high level of resistance is discussed based on the three gene model. Delayed symptom expression was evident in genotypes with one or two susceptible alleles. The implications of delayed expression of symptoms in selection and breeding for resistance to CPSMV are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Pot and laboratory experiments were performed in order to elucidate the genetics of resistance of three cowpea (Vigna unguiculata (L.) Walp.) resistant sources to two biotypes of the parasitic weed Striga gesnerioides (Willd.) Vatke (witchweed). B301, Suvita-2 and IT82D-849 were crossed to susceptible cultivars. Roots of each plant of parental, F1, F2, BC1 and BC2 populations were washed free of soil and examined closely for S. gesnerioides attachment. Data on resistant and susceptible cowpea plants were analyzed using the chi-square test to ascertain the goodness of fit to different genetic ratios. Segregation patterns indicate monogenic dominant inheritance of resistance to both S. gesnerioides biotypes in B301. Suvita-2, which is susceptible to the biotype from Maradi, Niger, showed segregation patterns that indicate monogenic dominant inheritance of resistance to S. gesnerioides biotype from Cinzana, Mali. Results also indicate monogenic dominant inheritance of resistance to S. gesnerioides biotype from Cinzana in IT82D-849. However, the inheritance of resistance to the biotype from Maradi would be monogenic and recessive in this line. These results suggest that the resistance of all three sources would be easy to transfer to promising breeding lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Cowpea, Vigna unguiculata (L.), is an important grain legume grown in the tropics where it constitutes a valuable source of protein in the diets of millions of people. Some abiotic and biotic stresses adversely affect its productivity. A review of the genetics, genomics and breeding of cowpea is presented in this article. Cowpea breeding programmes have studied intensively qualitative and quantitative genetics of the crop to better enhance its improvement. A number of initiatives including Tropical Legumes projects have contributed to the development of cowpea genomic resources. Recent progress in the development of consensus genetic map containing 37,372 SNPs mapped to 3,280 bins will strengthen cowpea trait discovery pipeline. Several informative markers associated with quantitative trait loci (QTL) related to desirable attributes of cowpea were generated. Cowpea genetic improvement activities aim at the development of drought tolerant, phosphorus use efficient, bacterial blight and virus resistant lines through exploiting available genetic resources as well as deployment of modern breeding tools that will enhance genetic gain when grown by sub‐Saharan Africa farmers.  相似文献   

12.
The inheritance of resistance to powdery mildew was investigated in 20 accessions of Hordeum spontaneum and in 20 F4 lines derived from crosses between the variety ‘Aramir’ and 13 accessions of H. spontaneum. Two resistance genes were detected in 17 accessions, and three resistance genes in one accession. In two accessions, only one resistance gene was present. The 20 breeding lines showed a large variation in infection type and infection level. The genetic relationship between the resistance genes detected was investigated in the seven most resistant F4 lines. These F4 lines were divided into three groups which carried different resistance genes. In two lines, the detected resistance gene was shown to be race-specific.  相似文献   

13.
Tomato (Solanum lycopersicum) production in tropical and subtropical regions of the world is limited by the endemic presence of Tomato yellow leaf curl virus (TYLCV). Breeding programmes aimed at producing TYLCV‐resistant tomato cultivars have utilized resistance sources derived from wild tomato species. So far, all reported breeding programmes have introgressed TYLCV resistance from a single wild tomato source. Here, we tested the hypothesis that pyramiding resistances from different wild tomato species might improve the degree of resistance of the domesticated tomato to TYLCV. We have crossed TYLCV‐resistant lines that originated from different wild tomato progenitors, Solanum chilense, Solanum peruvianum, Solanum pimpinellifolium, and Solanum habrochaites. The various parental resistant lines and the F1 hybrids were inoculated in the greenhouse using viruliferous whiteflies. Control, non‐inoculated plants of the same lines and hybrids were exposed to non‐viruliferous whiteflies. Following inoculation, the plants were scored for disease symptom severity, and transplanted to the field. Resistance was assayed by comparing yield of inoculated plants to those of the control non‐inoculated plants of the same variety. Results showed that the F1 hybrids between the resistant lines and the susceptible line suffered major yield reduction because of infection, but all hybrids were more resistant than the susceptible parent. All F1 hybrids resulting from a cross between two resistant parents, showed a relatively high level of resistance, which in most cases was similar to that displayed by the more resistant parent. In some cases, the hybrids displayed better levels of resistance than both parents, but the differences were not statistically significant. The F1 hybrid between a line with resistance from S. habrochaites and a line with resistance from S. peruvianum (HAB and 72‐PER), exhibited the lowest yield loss and the mildest level of symptoms. Although the resistance level of this F1 hybrid was not statistically different from the level of resistance displayed by the 72‐PER parent itself, it was statistically better than the level of resistance displayed by the F1 hybrids between 72‐PER and any other resistant or susceptible line.  相似文献   

14.
Bruchid beetles or seed weevils are the most devastating stored pests of grain legumes causing considerable loss to mungbean (Vigna radiata (L.) Wilczek). Breeding for bruchid resistance is a major goal in mungbean improvement. Few sources of resistance in cultivated genepool were identified and characterized, however, there has been no study on the genetic control of the resistance. In this study, we investigated the inheritance of seed resistance to Callosobruchus chinensis (L.) and C. maculatus (F.) in two landrace mungbean accessions, V2709BG and V2802BG. The F1, F2 and BC generations were developed from crosses between the resistant and susceptible accessions and evaluated for resistance to the insects. It was found that resistance to bruchids in seeds is controlled by maternal plant genotype. All F1 plants derived from both direct and reciprocal crosses exhibited resistance to the bruchids. Segregation pattern of reaction to the beetles in the F2 and backcross populations showed that the resistance is controlled by a major gene, with resistance is dominant at varying degrees of expressivity. Although the presence of modifiers was also observed. The gene is likely the same locus in both V2709BG and V2802BG. The resistant gene is considered very useful in breeding for seed resistance to bruchids in mungbean.  相似文献   

15.
The objective of this work was to evaluate the genetic variability among six cowpea (Vigna unguiculata) cultivars differing in their resistance to Callosobruchus maculatus (F.) weevil. Two resistant bean cultivars were used to compare between the sensitive, moderate tolerant, and high tolerant cowpea cultivars. The differentiations were performed by using random amplified polymorphic DNA (RAPD) fingerprinting, protein concentration and organic and non-organic components in seed coat. Six polymorphic primers were identified, resulting in different informative bands. Based on polymorphic profiles, three clusters were formed. Clustering was mainly affected by the resistance to weevil pest. The sensitive cowpea cultivars were separated in one group, the moderate tolerant and high tolerant cultivars came in separate groups, and finally, the resistant bean cultivars separated clearly in one distinct group. The most interesting result was represented by concentration of total protein in the seed coat. The protein concentration in the resistant bean cultivars were approximately 50% less than concentration in each of the moderate tolerant and sensitive cultivars of cowpea. Ferric ions were about 25% less than the moderate tolerant and sensitive cultivars. The concentrations of calcium and potassium in seed coats were higher in the resistant beans than in cowpea cultivars. Cobalt was about four times higher in resistant bean than in the sensitive and moderate tolerant cowpea cultivars, which may play a major role in seed resistance to weevil.  相似文献   

16.
Cowpea aphid-borne mosaic virus (CABMV) is a major virus disease in Uganda that causes substantial loss of the cowpea crop especially in growth and yield. The mode of gene action conferring resistance to the virus is not well understood. The objective of the study was to determine the genetic inheritance of resistance in cowpea crosses. Three susceptible (S) cowpea landraces that are commonly grown by farmers were crossed with five introduced resistant cowpea varieties in accordance with a North Carolina mating design II scheme. The F1, F2 and BC1F1 progenies generated were evaluated in the field together with their parents. They were then infected with two infection methods namely: by spreader-rows of S cultivar (Ebelat) and artificial inoculation of virus extracts. The results obtained showed that general combining ability (GCA) and specific combining ability (SCA) effects were significant, indicating that both additive and non-additive gene effects controlled virus infection. The results further demonstrated that the GCA effects (59.8?%) were more important than SCA effects (40.2?%) in determining virus resistance in the cowpea varieties. Utilisation of good general combiners of the varieties MU-93, IT82D-516-2, SECOW-2W and IT85F-2841 in hybridisation to improve virus resistance in cowpea crosses would be recommended. The result of this study provided an indication that CABMV resistance was conditioned by more than one recessive gene in eight populations, but also revealed resistance to be conditioned by a single recessive gene in the other seven populations. Observation of continuous distribution of progenies for severity data in the F2 populations also confirmed significance of quantitative inheritance for CABMV resistance. Therefore, the significance of GCA effects suggests that recurrent selection could be applied to accumulate the additive genes for resistance in F2 populations.  相似文献   

17.
The Rysto gene from Solanum stoloniferum introduced into potato cultivars (Solanum tuberosum L. ssp. tuberosum) confers resistance to potato virus A, potato virus V and potato virus Y (PVY). In addition to PVY, tobacco etch virus (TEV) and a TEV construct that encodes β‐glucuronidase (TEV‐GUS) were inoculated to determine the inheritance of resistance to these viruses in progenies obtained from potato cultivars containing the Rysto gene. While cultivars ‘Karlena’ and ‘Delikat’ were susceptible, ‘Bettina’ and clone 927eY were resistant to PVY, TEV and TEV‐GUS, as determined by enzyme linked immunosorbent assay, biotest and GUS assay, respectively. The segregation ratios obtained from the progenies of ‘Bettina’בDelikat’ and 816eY בKarlena’ indicate that resistances to PVY and TEV are governed by one dominant gene or two genes tightly linked in coupling phase. Evidently, Rysto confers broad spectrum resistance to potyviruses. TEV resistance could be reliably detected 4 days after inoculation with the TEV‐GUS construct by GUS assay. Therefore, the GUS‐tagged TEV construct can be used for early selection for resistances based on the gene Rysto or closely linked genes.  相似文献   

18.
Degenerate oligonucleotides designed to recognize conserved coding regions within the nucleotide binding site (NBS) and hydrophobic region of known resistance (R)genes from various plant species were used to target PCR to amplify resistance gene analogs (RGAs) from a cowpea (Vigna unguiculata L. Walp.) cultivar resistant to Striga gesnerioides. PCR products consisted of a group of fragments approximately 500 bp in length that migrated as a single band during agarose gel electrophoresis. The nucleotide sequence of fifty different cloned fragments was determined and their predicted amino acid sequences compared to each other and to the amino acid sequence encoded by known resistance genes, and RGAs from other plant species. Cluster analysis identified five different classes of RGAs in cowpea. Gel blot analysis revealed that each class recognized a different subset of loci in the cowpea genome. Several of the RGAs were associated with restriction fragment length polymorphisms, which allowed them to be placed on the cowpea genomic map. The potential for using these sequences to isolate R genes, and subsequent direct manipulation of disease and pest resistance using genetic engineering is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

20.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号