首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle being classified into fourteen reproductively incompatible anastomosis groups (AGs). AG3-PT (a potato subgroup) is associated with quantitative and qualitative yield losses through stem canker and black scurf in potato. Here we present the first draft sequence of the R. solani [AG3-PT] strain RS-20 with a G-C content of 48.3%. It consists of 11,431 total predicted protein coding regions including 181 tRNA and 31 rRNA coding genes. The initial pBLAST revealed more than 97% hits among AG groups where as only 1.7% of genes hit with other organisms. The R. solani genome is found to be dominated with tri mer repeats. The genome-wide evolutionary studies revealed the close association of AG3-PT with AG3. The draft sequence represents a helpful resource not only for understanding the core genes involved in pathogenecity but also evolution and adaptive behaviour within the R. solani species complex.  相似文献   

2.
Crop damage is associated with infection by plant pathogens but can also arise through abiotic factors. However, the plant pathogens are involved in biotic interactions with other plant pathogens, and these interactions may differ depending of the cultivar of the crop. Here, the interaction between the fungus Rhizoctonia solani (AG3) and free-living plant-parasitic nematodes was investigated in a pot experiment with different potato cultivars. No synergistic interaction between R. solani and plant-parasitic nematodes was found, instead there was an effect of treatment with lower tuber yield when nematodes occurred alone. There were differences among the cultivars regarding incidence of black scurf, dry weight of stems and tubers, and there was interactive effects between treatment and cultivar regarding dry weight of stolons and roots. Therefore, results concerning incidence and damage of R. solani and/or plant-parasitic nematodes found for one cultivar may not be applicable to other cultivars.  相似文献   

3.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

4.
Fusarium semitectum is one of the important causal agents of dry rot of potato tubers in the world. In order to determine genetic variability among 41 isolates of F. semitectum, morphological and molecular studies were carried out. All F. semitectum isolates were recovered from infected potato tubers with dry rot symptoms collected from four provinces in Iran. According to macroscopic and microscopic characteristics, 41 isolates of F. semitectum were classified in two morphotypes (morphotypes I and II). All 41 isolates were evaluated for their pathogenicity on healthy potato tubers. Tuber rot symptoms were observed on the 21st day after inoculation of Fusarium isolates on the tubers tested. The measurement was done by comparing the depth and width of lesion expansion among the isolates. Molecular characterization through PCR-IGS-RFLP analysis by six restriction enzymes (AluI, BsuRI, Eco88I, MspI, TaqI and PstI) divided the 41 isolates of F. semitectum into two separated clusters that were in accordance with the morphological characterization.  相似文献   

5.
Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.  相似文献   

6.
Teff (Eragrostis tef) is a fine stemmed annual grass and gluten free small grain that is of interest as a forage, cover, or a rotation crop. Little is known about the susceptibility of teff to many diseases. Teff could be grown in rotation with potato in the northwestern United States provided teff cultivation is economical and does not increase soil populations for pathogens affecting rotation crops such as Verticillium dahliae. Verticillium dahliae infects a wide range of dicotyledonous plants, making it one of the most important fungal pathogens of crop plants in North America, including potato. The objective of this study was to quantify the susceptibility of teff to eight V. dahliae isolates and compare the susceptibility of teff to eggplant. Teff was confirmed as a host for V. dahliae, as indicated by the presence of microsclerotia in teff stems and roots after artificial inoculation in two years of greenhouse studies. The number of microsclerotia produced in teff did not differ between mint and potato pathotypes of V. dahliae. No V. dahliae isolate produced significantly greater numbers of microsclerotia than any of the seven other isolates tested in a two-year study. Microsclerotia production of V. dahliae in teff was consistently less than in susceptible eggplant cv. Night shadow in both greenhouse experiments (P?<?0.02). It is unlikely that teff infected by V. dahliae will proliferate microsclerotia of mint or potato-aggressive pathotypes, especially when compared to susceptible eggplant cultivars.  相似文献   

7.
Stem canker on germinating potato sprouts is often caused by seed-borne inoculum of the fungus Rhizoctonia solani. However, high amounts of free-living plant-parasitic nematodes have been found in field patches of potato plants with stem canker. Fungicide treatment of the seed tubers can be used to avoid stem canker caused by seed-borne inoculum but it is unknown if nematodes can affect this. To investigate whether free-living plant-parasitic nematodes, the root-lesion nematode Pratylenchus penetrans or a combination of several plant-parasitic nematode genera in a full nematode community, may have a negative effect on the fungicide seed treatment, a pot experiment with seed tubers inoculated with R. solani, half of which were treated with fungicides, was performed. The seed-borne inoculum caused severe damage to the plants, while no fungal damages were observed on the fungicide treated plants. This shows that the nematodes did not affect the fungicide treatment. The probability of black scurf decreased in treatments with a full nematode community, which may be due to the action of fungal-feeding nematodes.  相似文献   

8.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) causes extensive losses in potato production systems globally. Two pot experiments were established in the greenhouse in summer 2013 and winter 2014 to evaluate the effectiveness of different soil chemicals, fumigant, amendments and biological control agents (BCAs) against Sss in the rhizospheric soil, potato roots and tubers. The study used visual assessment methods to assess the effect of treatments on root galling and zoosporangia production, and qPCR to measure Sss concentration in the soil and in the potato roots and tubers. All six soil treatments, namely metam sodium, fluazinam, ZincMax, calcium cyanamide, Biocult and a combination of Bacillus subtilis and Trichoderma asperellum recorded significantly (P < 0.05) lower numbers of zoosporangia in the roots compared to the untreated control. The same effect was observed on the concentration of Sss DNA in the roots at tuber initiation. A more diverse picture was obtained when root gall scores at tuber initiation and Sss DNA in the rhizospheric soil at tuber initiation and harvesting were compared. Significant differences (P < 0.05) were also noted in disease severity, disease incidence, and tuber yield between metam sodium, fluazinam, ZincMax, calcium cyanamide and the untreated control. Calcium cyanamide gave the highest tuber yield. The study demonstrated the potential of soil treatments such as metam sodium, fluazinam, ZincMax and calcium cyanamide in managing Sss in potatoes by reducing the pathogen both in the rhizospheric soil and the roots of the potato plant.  相似文献   

9.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

10.
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most important diseases of potato in North America. Soil incorporation of alfalfa residues prior to planting potato could be a nonchemical Verticillium wilt management tactic by reducing the number of viable microsclerotia in field soil. Verticillium dahliae microsclerotia were quantified in field soils where organic material from alfalfa was incorporated, and numbers of microsclerotia were compared to fields where alfalfa residue was not incorporated. In addition, bacterial metagenomics was utilized to characterize soils where organic material from alfalfa was or was not incorporated to determine if alfalfa residue incorporation facilitates the formation of soils that suppress or kill V. dahliae microsclerotia. The number of V. dahliae microsclerotia in soil was greater (P = 0.0003) in fields where crop residue was incorporated than fields without incorporation when chloropicrin was used as a fumigant. Conversely, the number of V. dahliae microsclerotia observed in potato plants did not differ (P = 0.4020) between fields where residues were or were not incorporated if chloropicrin was used. Alfalfa residue incorporation did not significantly alter the soil bacterial metagenome compared to fields not subject to residue incorporation in both years of study. Despite these conclusions, the method can be employed to analyze the effect of grower practices with the intent of linking a field practice to increasing soil bacterial diversity and decreasing Verticillium wilt severity on potato.  相似文献   

11.

Background

Fungal endophytes are the living symbionts which cause no apparent damage to the host tissue. The distribution pattern of these endophytes within a host plant is mediated by environmental factors. This study was carried out to explore the fungal endophyte community and their distribution pattern in Asparagus racemosus and Hemidesmus indicus growing in the study area.

Results

Foliar endophytes were isolated for 2 years from A. racemosus and H. indicus at four different seasons (June–August, September–November, December–February, March–May). A total of 5400 (675/season/year) leaf segments harbored 38 fungal species belonging to 17 genera, 12 miscellaneous mycelia sterile from 968 isolates and 13 had yeast like growth. In A. racemosus, Acremonium strictum and Phomopsis sp.1, were dominant with overall relative colonization densities (RCD) of 7.11% and 5.44% respectively, followed by Colletotrichum sp.3 and Colletotrichum sp.1 of 4.89% and 4.83% respectively. In H. indicus the dominant species was A. strictum having higher overall RCD of 5.06%, followed by Fusarium moniliforme and Colletotrichum sp.2 with RCD of 3.83% and 3%, respectively. Further the overall colonization and isolation rates were higher during the wet periods (September–November) in both A. racemosus (92.22% and 95.11%) and H. indicus (82% and 77.11%).

Conclusion

Study samples treated with 0.2% HgCl2 and 75% EtOH for 30 s and 1 min, respectively, confirmed most favorable method of isolation of the endophytes. Owing to high mean isolation and colonization rates, September–November season proved to be the optimal season for endophyte isolation in both the study plants. Assessing the bioactive potential of these endophytes, may lead to the isolation of novel natural products and metabolites.
  相似文献   

12.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   

13.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

14.
The effect of essential oil (EO) from anise (Pimpinellia anisum) on the mortality of young larvae of Colorado potato beetles has been studied. In our bioassays, P. anisum EO significantly increased the mortality of the second instar larvae of L. decemlineata. Significantly different values of LD50 and LD90 were established for acute (LD50 = 1.76, and LD90 = 8.29) as well as chronic toxicity (LD50 = 0.45, and LD90 = 1.01). Decrease of both values over experimental period was evident, which showed that the larval mortality was slow and cumulative. The composition of EO used for biological experiments was also assessed. The main component detected in EO from P. anisum was anethole (79.87%), followed by anisaldehyde (7.74%), estragole (5.88%) and β-linalool (1.07%). Within five days, residual concentration of EO decreased from 3.87 mg/g of dry weight immediately after foliar applications to 0.9 mg per g of dry weight. The effect of this slow evaporation could be explained by dominant presence of anethole or by the type of formulation and the addition of oil and tween. Results of our study demonstrate that EO from P. anisum has insecticidal properties that may lead to the development of new organic products for the control of Colorado potato beetles.  相似文献   

15.
Air temperature (Ta) is commonly used for modeling rice phenology. However, since the growing point of rice is under water during the vegetative and the early part of the reproductive period, water temperature (Tw) is likely to have a greater influence on crop developmental rates than Ta during this period. To test this hypothesis, we monitored Tw, Ta, and crop phenology in three commercial irrigated rice fields in California, USA. Sampling locations were set up on along a transect from the water inlet into the field. (Water warms up as it moves into the field.) Ta averaged 22.7 °C across sampling locations within each field, but average seasonal Tw increased from 22 °C near the inlet to 23.4 °C furthest away from the inlet. Relative to Tw furthest from the inlet, low Tw near the inlet delayed time to panicle initiation (PI 5 days) and heading (HD 8 days) and the appearance of one yellow hull on the main stem panicle (R7 9 days). Using Tw instead of Ta when the active growing point is under water until booting (midway between PI and HD) in a thermal time model improved accuracy (root-mean-square error, RMSE) for predicting time to PI by 2.5 days and HD by 1.6 days and R7 by 1.8 days. This model was further validated under more typical field conditions (i.e., not close to cold water inlets) in six locations in California. Under these conditions, average Tw was 2.6 °C higher than Ta between planting and booting, primarily due to higher daily maximum Tw values. Using Tw in the model until booting improved RMSE by 1.2 days in predicting time to HD. Using Tw instead of Ta during this period could improve the accuracy of rice phenology models.  相似文献   

16.
Field studies involving the effects of growing sweet corn (Zea mays var. Jubilee sweet corn and var. Jubilee super-sweet corn) as a green manure for 2 or 3 seasons demonstrated both suppression of verticillium wilt by 60–70% (Verticillium dahliae Kleb.) and increased potato yields. Although these treatments showed no direct effect on V. dahliae soil populations, the colonization of V. dahliae on potato feeder-roots and in potato tissue of stem apices were reduced. Feeder-root colonization by V. dahliae was positively correlated with verticillium wilt incidence (P?≤?0.05 to P?≤?0.01) and negatively correlated with yield (P?≤?0.05). Corn green manures additionally increased populations of several soilborne fungi which included Ulocladium, and Fusarium equiseti. Specific nutritional and microbial effects were secondary to the effects of cropping practices. When compared with the fallow treatments for 1994, 1995, and 1997, the percentage yield increases for 1994 were: +34% for total yield, +57% for U.S. #1’s, and +127% for tubers >280 g; for 1995 (a year of reduced degree-days and decreased verticillium incidence): +14% for total yields, +15% for U.S. #1 yields, and +21% for tubers >280 g; for 1997: +24% for yield totals, +74% for U.S. #1’s and +179% for tubers >280 g. For establishing these yield benefits, stalks with and without ears of corn were used as green manures. Corn varieties differed for effectiveness as a green manure, which could be accounted for by differences of biomass. When compared with the super-sweet corn, the sweet corn produced an increase (>2-fold) of biomass with less than half of the resulting wilt incidence. When potato was grown consecutively for 2 years, the benefits from green manures became mostly eliminated. However, following 2 consecutive years of potato, a single green manure of sweet corn was sufficient to return the potato crop to the original benefits of verticillium suppression and increased yields. This occurred even though soilborne V. dahliae inoculum levels had increased by >4-fold from 45 to 182 cfu g?1 of soil. Results of this study demonstrate the importance of green manures and soil-ecology to the management of the Russet Burbank potato.  相似文献   

17.
To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml?1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.  相似文献   

18.
The objective of the study was to assess the direct and indirect effects of 13 important morphological and biochemical traits on yield enhancement in 28 advanced breeding lines of potato (Solanum tuberosum L.) in the foothills of north-western Himalayas. Tuber yield was positively correlated with number of tubers per plant (r?=?0.76), number of stems per plant (r?=?0.53), number of leaves per plant (r?=?0.43) and tuber weight (r?=?0.37). Furthermore, tuber yield exhibited a significant negative correlation with days to maturity (r?=???0.39). Days to 50% emergence had a significant negative correlation with protein content (r?=???0.42). Path analysis revealed that the components of yield, number of tubers per plant and tuber weight, had high positive direct effects (0.876 and 0.618, respectively) on tuber yield, whereas the effects of other traits were low (≤?0.128). Furthermore, tuber weight had an indirect negative effect on tuber yield through the number of tubers. Tuber size had a low correlation (0.19) with tuber yield because a positive indirect effect (0.451) through tuber weight was balanced by a negative indirect effect (??0.254) through tuber number. The number of stems and number of leaves had positive indirect effects (0.377 and 0.377, respectively) on tuber yield through tuber numbers, whereas days to maturity had a negative indirect effect (??0.298) through tuber numbers. There were virtually no indirect effects through the biochemical traits. The implications for potato breeding are discussed.  相似文献   

19.
20.
In the present study, an attempt has been made to dye the wool fabric with Limoniastrum monopetalum stems, as a source of natural dye, which has not been exploited so far. Optimization of extraction parameters was done. Optimum results of extraction process were obtained with a dye concentration of 60 g/l, a temperature of 90 °C during 100 min. The study of different factors effecting dyeability of wool fabrics by aqueous L. monopetalum stems extract showed that the pH of dye bath and dyeing temperature and time affected considerably the color yield. The best results were obtained at the following conditions; pH 2, 100 °C, and 60 min. Metal mordants, when used in conjunction with L. monopetalum dye, allowed to obtain various shades. The determination of phenolic contents of aqueous L. monopetalum stems extract showed a high amount of phenolic components. Based on RP-HPLC, the coloring extract of L. monopetalum stems contains tannins and polyphenols. The major identified phenolic compounds were procatechuic, Trans-cinnamic and gallic acids. Hence, aqueous L. monopetalum stems extract could be successfully exploited for dyeing wool fabrics with high color yield (K/S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号