首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The moisture, time and temperature dependence of annealing for one commercial and 10 laboratory extracted starches (from five soft and five hard wheats grown in various places in England in 1994) were investigated. Annealing was found to occur at least 15°C below the onset gelatinisation temperature (To), the extent of which was time dependent, but was much more evident (as indicated by the relative increase in gelatinisation temperatures) the closer to To the annealing temperature was set. Annealing could be initiated when the starch contained 20% by weight moisture, but the process was restricted unless the moisture content exceeded 60%. 13C-CP/MAS-NMR indicated that the number of double helices remained constant post-annealing and it is proposed that annealing improves the crystalline register of double helices, thereby ‘perfecting’ starch crystallites rather than promoting the formation of additional double helices. This perfection of crystallites is possibly initiated by incipient swelling and the resulting mobility of amorphous α-glucans which facilitates ordering of double helices and, probably, greater ordering of the amorphous regions themselves.  相似文献   

3.
4.
The effect of gluten on the retrogradation of wheat starch   总被引:1,自引:0,他引:1  
The retrogradation of amylopectin in a wheat starch and a wheat starch/gluten (10:1) blend prepared by extrusion and containing 34% water (wet weight basis) was studied using X-ray diffraction, differential scanning calorimetry and NMR relaxometry during storage at constant water content and temperature (25 °C). For both samples, amylopectin ‘fully’ retrograded after 2–3 days storage, i.e. the different parameters monitored with time to follow the retrogradation had reached their maximum value, and crystallised predominantly into the A polymorph. Under the experimental conditions used, there was no evidence of any significant effects of the presence of gluten on the kinetics, extent or polymorphism of amylopectin retrogradation.  相似文献   

5.
6.
The potential of peptidase-containing bran extracts from germinated cereals (wheat, emmer, barley) and a peptidase preparation from Aspergillus niger (AN-PEP) to degrade gluten in wheat starch below the threshold for gluten-free foods of 20 mg/kg was compared. The gluten-specific peptidase activity of the peptidases was determined by using gliadin as a protein-based substrate as well as the two celiac-active peptides PQPQLPYPQPQLPY (α-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein). The peptidase activity of AN-PEP exceeded the activities of bran from germinated cereals by a factor up to 690,000. Three wheat starches with initial gluten contents of 110, 1679, and 2070 mg/kg, respectively, were incubated with bran extracts and AN-PEP, lyophilized, and residual gluten was quantitated by a competitive ELISA. Unlike peptidases from bran extracts, AN-PEP was capable of degrading gluten below 20 mg/kg in all starches. The absence of gluten in AN-PEP-treated starches was confirmed by liquid-chromatography-mass spectrometry. The properties of gluten-free starches were comparable to the native starches with the exception of a reduced viscosity after AN-PEP treatment. This problem could be overcome by using higher enzyme concentrations and shorter incubation times or by optimizing AN-PEP production for lower residual α-amylase activity.  相似文献   

7.
It is unknown whether starch isolated before dough development has the same surface lipid composition as starch isolated after dough development. The abundance of starch surface polar lipids is related to the physical hardness of the endosperm, but the variation in specific lipid classes and molecular species is unknown. The objective of this study was to determine the variation in polar lipids present on the surface of wheat starch granules. The experimental wheat lines used are, within each set, near-isogenic to each other but vary in endosperm hardness. Starch was isolated using two different processes: a dough and a batter method. Direct infusion electrospray ionization tandem mass spectrometry was used to identify and quantitatively determine the polar lipid species in wheat flour and on starch. Wide ranges in starch surface polar lipid concentrations were observed between the starch isolation methods. Starch isolation method provided a greater source of variation than did wheat kernel hardness. When dough is optimally mixed, lipids originally on the surface of wheat starch are dissociated, whereas in a batter system, starch surface lipids stay associated with the starch surface. The predominant starch surface polar lipids were digalactosyldigylcerol (DGDG), monogalactosyldigylcerol (MGDG) and phosphatidylcholine (PC) polar lipid classes.  相似文献   

8.
Reduced glutathione (GSH) commonly exists in wheat flour and has remarkable influence on gluten properties. In this study, effect of GSH on the gelatinization and retrogradation of wheat flour and wheat starch were investigated to better understand the GSH-gluten-starch interactions in wheat flour. Compared with wheat starch, wheat flour showed significant decreases in peak and final viscosity, and gelatinization onset temperature with increasing GSH concentration. GSH depolymerized gluten and thereby broke down the protein barrier around starch granules to make the starch easily gelatinized. However, the interaction between GSH and wheat starch restrained starch swelling. GSH addition resulted in weakened structure with higher water mobility in freshly gelatinized wheat flour dispersions but decreased water mobility in wheat starch dispersions. After storage at 4 °C for 7 d, GSH increased elasticity and retrogradation degree in wheat flour dispersions but retarded retrogradation in wheat starch dispersions. The results indicated that GSH promoted retrogradation of wheat flour, which mainly attributed to the depolymerized gluten embedding in the leached starch chains, and inhibiting the re-association of amylose, and subsequently promoted the starch intermolecular associations and starch retrogradation. This study could provide valuable information for the control of the quality of wheat flour-based products.  相似文献   

9.
To investigate the effect of A- and B-type granules of wheat starch on noodle quality, the fractionation and reconstitution method was used to prepare noodles with five different ratios of A-to B-granules (100A-0B, 75A-25B, 50A-50B, 25A-75B, 0A-100B). The pasting and swelling properties of reconstituted flours and the microstructure of noodles observed under a confocal laser scanning microscope (CLSM) indicated that there were at least two aspects were responsible for the changes in noodle quality. First, the water distribution, texture and cooking quality of noodles were influenced by the different physicochemical properties of A- and B-granules; and second, the gluten structure in noodles was altered by the granule size distribution, which further led to a difference in noodle quality. In general, with increasing number of B-granules, the A22 (the proportion of less immobilized water) of raw noodles and the hardness, resilience and chewiness of cooked noodles increased first and then decreased, while the cooking loss, water absorption and protein loss showed the reverse trend. Raw noodle samples containing 50A-50B had the minimum T22 (less immobilized water) but the maximum A22 and, when cooked, had the greatest hardness, chewiness and resilience and the least cooking loss (6.6%) and water absorption (166.1%). These results have important implications for illustrating the mechanism by which A- and B-granules affect noodle quality and guide efforts to improve noodle quality and wheat breeding.  相似文献   

10.
Most of the unique properties of waxy wheat have been associated with the lack of amylose, that in turn may affect the mutual interactions between starch and proteins. To address this particular aspect, we carried out molecular, rheological, and calorimetric studies on flours from two waxy wheat lines that were compared with a non-waxy one. Dough thermal properties and water binding capacity were investigated by Differential Scanning Calorimetry (DSC) and by thermogravimetric analysis, respectively. Protein solvation, aggregation, and thiol accessibility were also investigated, together with dough mixing properties and stickiness. Proteins in waxy wheat samples needed more water to complete solvation, likely because of the water-retaining capacity of waxy wheat starch. In waxy wheat dough, water was tightly bound to starch, and DSC studies indicated an increase in gelatinization temperature. Moreover, the low water mobility in waxy wheat resulted in low and retarded gluten hydration and in high stickiness. In samples with the highest stickiness, protein aggregates were stabilized mainly by hydrophobic interactions. Differences between waxy wheat lines may be attributed to a different structural organization of components within each class of biopolymers.  相似文献   

11.
Wheat quality characteristics are influenced by different factors such as moisture content, storage time and temperature. In this study accelerated ageing of wheat grains was carried out by increasing moisture content (16, 18 and 20%) and keeping the samples in different temperatures (30, 40 and 50 °C) for different periods (2, 5 and 8 days). After milling, the thermal properties of starch and structure of gluten were investigated using Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR); respectively. The experimental set up was designed using response surface methodology and the three distinct factors were combined by central composite design. Results showed that increasing moisture content caused a decrease in onset, peak and end set temperatures of gelatinization while increasing storage time and temperature increased these parameters. By progressing storage time the band intensity of thiol groups decreased while that of disulfide groups of gluten increased indicating an improvement in gluten quality. Increasing moisture content from 16 to 20% and higher storage temperature (50 °C) decreased intensity of disulfide bands.  相似文献   

12.
Channels within soft wheat starch A- and B-type granules   总被引:5,自引:1,他引:4  
The nature of channels within wheat starch granules was investigated using scanning electron and confocal laser scanning microscopy. A-type granules stained with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA, protein-specific probe) revealed a network of radially oriented, channel-like protein structures similar to those previously reported. However, treatment of the same starch granules with methanolic merbromin (fluorescent dye) solution, which is used to highlight external granule surfaces (including those of channels) under non-swelling conditions, revealed few, if any, channels extending into the granule interior. This discrepancy suggested that channels within wheat starch granules were filled at least in part with protein. Removal of protein with protease facilitated greater access of methanolic merbromin to channels and/or cavities for both granule types. For A-type starch granules, relatively large channels were observed in the equatorial groove region, while finer channels originated from other regions of the granule. This work reports the first visualization of B-type granule channels, which most frequently occurred as less-defined voids (as opposed to the fine, discrete channels of A-type granules) extending to granule surfaces. Channels of A- and B-type starch granules appeared to facilitate transfer of chemical reagent into the granule matrix, though this effect was aided by granule swelling (hydration) and/or removal of channel-associated protein.  相似文献   

13.
Increased flour yield in hard wheat is associated with increased endosperm rheology index, calculated from strength and stiffness as measured by the SKCS. A study of the fractured endosperm of hard wheat varieties grouped according to similar rheology index values was performed using environmental scanning electron microscopy (ESEM). Differing microstructures and fracture patterns were observed between each group. Specifically, the group representing high rheology index had a greater concentration of small starch granules in prismatic cells. Samples of diverse wheat germplasm were grown at two sites and subjected to laboratory milling. Starch granule size distribution (SGSD) analysis using a laser diffraction method was undertaken on a subset of samples in triplicate representing a range in flour yield. The results supported an hypothesis for a significant influence of SGSD on flour yield of hard wheat varieties. In addition, a significant part (R2>0.40 (p<0.05) at two sites) of the association appeared to be under genetic control. Results indicate a more even gradation of distributions involving an increase in the sample volume % of small granule (types B and C) and decrease in type A granules. This was associated with increased rheology index values and higher flour yield. The ratio of type A:C starch granules accounted for up to 58% (p<0.05) of the variation in flour yield in the samples studied. Thus, rheological parameters measured using a rapid SKCS screening method can be linked to the genetic regulation of SGSD with implications for the improvement of commercial processing performance of hard wheat.  相似文献   

14.
15.
16.
Gelatinisation and retrogradation of starch in wheat flour systems and whole wheat grains were studied using DSC and the impact of these events on starch digestibility was investigated. Gelatinisation of starch was possible in wheat flours with more than 60% moisture content (dwb) and gelatinised samples had higher digestibility values. Retrogradation of starch was studied with partially and fully cooked (boiled at 100 °C for 12 min and 32 min, respectively) wheat grains that were subjected to storage at 22 °C for 48 h. Stored samples had lower digestibility values when compared to the freshly cooked counterparts. The effect of moisture on retrogradation was studied with fully cooked wheat grains that were dried to a range of moisture contents (14.6–35.9%, wwb) and stored at 20 °C for 24 h. Retrogradation enthalpy increased with increasing moisture content; however, digestibility values did not reflect the changes in retrogradation enthalpy. The possibility of estimating the degree of retrogradation in fully cooked grains (32 min cooking) was investigated using a wheat flour-water system. The retrogradation enthalpy of fully cooked grains was slightly higher than the wheat flour-water system (at a moisture content of 49%, wwb) during the course of storage at 22 °C.  相似文献   

17.
The effects of repeated heating and cooling on the properties of pastes prepared from a commercial wheat starch (Triticum aestivum L.) with added monoglycerides were studied using a Rapid Visco Analyser (RVA). The nanostructure of the freeze-dried pastes was determined by X-ray diffraction and small-angle X-ray scattering. Pastes prepared from the wheat starch alone, or from the starch mixed with tripalmitin, which does not form complexes with starch, produced regular viscosity profiles in the RVA when subjected to multiple heat-cool cycles. In comparison, the effects of adding monoglycerides (or monoacylglycerols) depended on the chain length and saturation of the fatty acid of the monoglyceride. Repeated heat-cool cycles in the RVA of the starch with different monoglycerides induced the formation of complexes of varying stability that influenced the viscosity trace of the paste during multiple heating and cooling cycles. Small-angle X-ray scattering in combination with X-ray diffraction proved useful in describing the nanostructural changes in the RVA pastes induced by monoglycerides and temperature cycling. The results indicate that the functional properties of starch pastes may be manipulated through the strategic selection of an added monoglyceride.  相似文献   

18.
Gelatinisation and retrogradation of starch in wheat flour systems and whole wheat grains were studied using DSC and the impact of these events on starch digestibility was investigated. Gelatinisation of starch was possible in wheat flours with more than 60% moisture content (dwb) and gelatinised samples had higher digestibility values. Retrogradation of starch was studied with partially and fully cooked (boiled at 100 °C for 12 min and 32 min, respectively) wheat grains that were subjected to storage at 22 °C for 48 h. Stored samples had lower digestibility values when compared to the freshly cooked counterparts. The effect of moisture on retrogradation was studied with fully cooked wheat grains that were dried to a range of moisture contents (14.6–35.9%, wwb) and stored at 20 °C for 24 h. Retrogradation enthalpy increased with increasing moisture content; however, digestibility values did not reflect the changes in retrogradation enthalpy. The possibility of estimating the degree of retrogradation in fully cooked grains (32 min cooking) was investigated using a wheat flour-water system. The retrogradation enthalpy of fully cooked grains was slightly higher than the wheat flour-water system (at a moisture content of 49%, wwb) during the course of storage at 22 °C.  相似文献   

19.
Vital wheat gluten and lecithin (GL) (50:50, w/w) were dry blended in a coffee grinder and a 9.5% (w/v) aqueous slurry was jet-cooked (steam pressures of 65 psi/g inlet and 40 psi/g outlet) to disaggregate wheat gluten and facilitate better dispersion of the two components. The jet-cooked material was freeze-dried and stored at 0 °C for future use. The GL blend was added to pure food grade common maize and rice starch at concentrations of 0 (control), 6, 11, 16, and 21%. Starch gelatinization and retrogradation temperature transitions were determined using Differential Scanning Calorimetry (DSC). From the DSC profiles, the change in the ΔH value was used as an indication of starch retrogradation, where a higher ΔH value indicated higher retrogradation. The ΔH values of the blends at 4 °C had higher values than the −20 °C and the ambient (25 °C) storage temperatures. Overall, the 21% GL/starch blends reduced retrogradation by 50%. The lower amylose content of rice starch relative to maize starch was reflected in Rapid Visco Amylograph (RVA) measurements of peak viscosity, and similarly, Texture Analyzer (TA) measurements indicated that maize starch gel is firmer than rice starch gel. Retrogradation was also evaluated by observing G′, the shear storage modulus, as a function of time after running a standard pasting curve. Using this method, it appears that GL has a significant effect on maize starch retrogradation, since low concentrations (<0.4%, w/w) reduced G′ up to 40%. The opposite behavior was seen in rice starch, where G′ increased directly with added GL. It appears that the amylose level in the rice starch is too low to be affected by the GL, and the increase seen in G′ is most likely due to added solids.  相似文献   

20.
Modeling plant carbon flow and grain starch accumulation in wheat   总被引:1,自引:0,他引:1  
The process of starch accumulation in grain directly influences the yield and quality formation in wheat. Since few studies have been aimed at modeling the grain starch accumulation, this study was undertaken to develop a simplified process model for predicting the rate of starch accumulation in wheat grain by focusing on the variation of plant carbon dynamics post-anthesis. Five different experiments involving genotypes, nitrogen rates and water regimes were conducted to support model development and model evaluation. The model proposed that the starch accumulation rate (STR) in individual grain was determined by the availability of carbon source in plant (GCAi) and the ability of starch synthesis in grain (f(Ai)), as influenced by the factors of temperature, water and nitrogen conditions within plants. The f(Ai) could be described in a two-section curve with post-anthesis growing degree days (GDD), first exponential increase and then linear decrease. The GCAi was determined by post-anthesis carbon assimilation and carbon remobilization from vegetative organs to grains. A genotypic parameter was incorporated into the model algorithm, i.e. the maximum rate of individual grain starch accumulation, to differentiate the ability of starch accumulation among cultivars. The overall performance of the model was validated with different data sets from three field experiments spanning 3 years and comprising various genotypes, nitrogen and water levels. The RMSE values for all treatments were averaged as 12.51%, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for grain starch accumulation of different wheat cultivars under various growing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号