首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercritical fluid impregnation of selected wood species with tebuconazole   总被引:6,自引:0,他引:6  
The effects of pressure and temperature on supercritical fluid impregnation of tebuconazole were evaluated on Douglas-fir, western red cedar, red alder, white spruce, and white oak. Higher pressure markedly enhanced both the retention and distribution of tebuconazole in these species. When the rate of pressure release was altered at the ends of treatments of Douglas-fir, results varied. Generally, a higher rate of venting increased the steepness of the preservative gradient inward from the surface. Elevated pressures also affected some wood properties. Western red cedar and white spruce showed collapse, while the other three species were free of such defects. Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) tended to decline with higher pressure in western red cedar and white spruce, but the differences were rarely significant. No significant changes in MOE/MOR occurred with the other 3 species. Received 9 November 1998  相似文献   

2.
Five Japanese timbers, four timbers from the USA, and one Malaysian timber were evaluated for their resistance to the invasive dry-wood termite Incisitermes minor (Hagen) using laboratory choice and no-choice feeding tests with holed specimens. The highest survival rates of I. minor in both the heartwood and sapwood no-choice feeding tests were more than 70% after 3 months. When offered sapwood and heartwood choice feeding tests and the combined choice feeding tests, the highest survival rates of I. minor were more than 75% after 3 months. With regards to the percentage of wood mass losses in the no-choice and choice feeding tests, karamatsu (Larix leptolepsis), buna (Fagus crenata), and Douglas fir (Pseudotsuga menziesii) were classified as “resistant” species among the ten sapwood specimens. In the heartwood no-choice and choice feeding tests, the resistant species were buna, karamatsu, Douglas fir, sugi (Cryptomeria japonica), akamatsu (Pinus densiflora), and western red cedar (Thuja plicata). The ranking of the resistance of the ten commercial timbers against I. minor was buna > karamatsu > sugi > western red cedar > Douglas fir > rubber > western hemlock > hinoki > spruce.  相似文献   

3.
HOWARD  P. J. A.; HOWARD  D. M. 《Forestry》1990,63(2):177-196
Acidity of aqueous extracts of several tree and shrub leaf litterswas determined by titration to pH 7 with 0.01N NaOH. Bases weredetermined by back titration of 0.05N HCl extracts of groundlitters and after ashing. Lowest acidity was found in the broadleavedspecies (except sycamore) and western red cedar; greatest aciditywas found in western hemlock, grand fir, and one sample of Douglasfir. Largest contents of ash bases were found in some broadleavesplus western red cedar; the smallest contents were in most ofthe conifers. Excess ash bases (ash bases minus acidity) weregreatest in elm, hawthorn, western red cedar, hazel, willow,ash, and southern beech, and were smallest in western hemlock,Douglas fir, lodgepole pile, Sitka spruce, grand fir, hybridlarch, Scots pine, and Norway spruce. Acidity, directly titratableand ash bases, and excess ash bases showed significant, andin some cases quite large, variation between sites for somespecies. There is some support for the suggestion that excessash bases are greater in mull-forming than in mor-forming litters.Acidity was significantly greater for litters collected drythan for those collected wet. Litters which were stored airdry for several months showed increased acidity compared withtheir initial values.  相似文献   

4.
Successful regeneration of coastal montane sites harvested using alternative silvicultural systems may depend on the degree to which tree species can acclimate morphologically and physiologically to a variety of light environments. In a study to determine shade acclimation in montane conifers, one-year-old amabilis fir (Abies amabilis (Dougl.) Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were grown in a nursery under four shade treatments: full sunlight (0% shade), 60% and 30% shade using shade cloth, and 30% shade using lath slats. Shading influenced shoot development, foliar physiology and morphological characteristics of both amabilis fir and western hemlock but in general, the effects were small. Shade levels of 60% were required to induce significant acclimation, and western hemlock appeared to respond more positively than amabilis fir and therefore was considered more shade tolerant than amabilis fir. Light quality had little influence on growth and development, as indicated by a lack of significant differences in physiology or morphology between seedlings grown under shade cloth or lath slats. There were indications that adequate nutrition levels may mitigate the effects of shade on seedling morphology and physiology.  相似文献   

5.
Isocyanate resin-bonded 0.5 and 0.7 g/cm3 lauan (Shorea sp.) particleboards were produced from mats with uniform and distributed moisture content (MC) distributions, using three hot press closing speeds. The effects of these processing variables on the formation of density profile in particleboard and board properties were analyzed statistically. A definition of the density profile was introduced, and the correlations among the various defining factors were established. The results are summarized as follows. (1) The peak density (PD) of particleboard could be increased, with a slight reduction in the core density (CD), using mats with different MC distributions. (2) In a conventional density profile, CD and PD are highly dependent on the board mean density (MD); and the gradient factor (GF), peak distance from the faces (Pdi), and peak base (Pb) are significantly correlated to each other, at the 99% significance level. (3) Greater press closing speed reduces Pdi and Pb, with an increase in GF. (4) Greater press closing speed could increase the PD in board of low MD, with minimal effect on CD. (5) The modulus of elasticity (MOE) of particleboards from mats with high MC near the faces were consistently higher than those from mats with uniform MC, irrespective of the press closing speed, whereas their modulus of rupture (MOR) became indifferent at higher MD under slow and fast closing speeds. (6) Sanding does not improve the MOR and MOE of particleboard significantly.  相似文献   

6.
Six wood species were carbonized under various carbonization temperatures and nonoxygen conditions to obtained charcoal. The effects of wood species, rate of temperature rise, and carbonization temperature on the electromagnetic shielding efficiency (ESE) of the electric field were investigated. The wood species used in this study were Japanese cedar, China fir, western hemlock, red oak, fortune paulownia, and Taiwan acacia. Tested materials were carbonized in a high-temperature oven under the following conditions: rate of temperature rise 1°–5°C/min; carbonization temperature 500°–1100°C, with temperature intervals of 100°C; maximum temperature maintained for 1h; and flow rate of nitrogen 300ml/min. The electromagnetic insulation strength system was used to detect the ESE of the electric field of charcoal. It was found that western hemlock and fortune paulownia charcoal showed maximum ESE values of of 36 and 61dB generated at a carbonization temperature of 1000°C. The charcoals derived from four other wood species showed maximum ESE values of 28dB for Japanese cedar, 23dB for China fir, 32dB for red oak, and 38dB for Taiwan acacia, respectively, at a carbonization temperature of 1100°C. The ESE value for fortune paulownia charcoal was similar to those of metal nets. The relations between ESE and logarithmic values of resistivity (log) could be represented by a negatively exponential formula.Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

7.
Flat-sawn specimens of eight wood species, albizia (Paraserianthes falkata, 0.23 g/cm3), Japanese cedar (Cryptomeria japonica, 0.31 g/cm3), red lauan (Shorea sp., 0.36 g/cm3), European spruce (Picea abies, 0.44 g/cm3), Douglas fir (Pseudotsuga douglasii, 0.50 g/cm3), elm (Ulmus sp., 0.51 g/cm3), Japanese beech (Fagus crenata, 0.64 g/cm3), and Japanese birch (Betula maximowicziana, 0.71 g/cm3), were impregnated with low molecular weight phenol-formaldehyde (PF) resin and their compressive deformations were compared. The volume gain (VG) and weight gain due to 20% resin solution impregnation were different among species. Furthermore, the specific volume gain (VG/specific gravity), indicating the degree of swelling of the cell wall, also varied from 17.7% for European spruce to 26.4% for elm. Oven-dried specimens of each species were compressed using hot plates fixed to an Instron testing machine. The deformation behavior of resin-impregnated wood up to 10MPa was significantly different among the species. Stress development during cell wall collapse for low density wood was minimal. As a consequence, a significant increment of density occurred up to 2MPa for low density wood such as albizia and Japanese cedar. When PF resin-impregnated wood was compressed up to 2MPa and the pressure was kept constant for 30min, the density of Japanese cedar reached 1.18g/cm3, about 30% higher than the density of compressed Japanese birch, which possesses an original density that is 2.5 times higher than that of Japanese cedar. The mechanical properties of resin-impregnated wood, especially low density wood, increased with density. Hence, it is manifested that low density wood species have an advantage as raw materials for obtaining high-strength wood at low pressing pressure.  相似文献   

8.
In this report, the 575 specimens were divided into ten groups based on range of growth ring width. The modulus of elasticity (MOE) and modulus of rupture (MOR) of 45 × 90 mm specimens of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation dimension lumber were analyzed by average growth ring width and average density of each group. The results showed that the average growth ring width was in inverse proportion to density, MOE, and MOR of the dimension lumber. Furthermore, average density was in direct proportion to MOE and MOR of the dimension lumber. The coefficient of determination (R 2) for all the regression equations ranged from 0.7340 to 0.9207 at a significance level of 0.001. However, without such group classification, there was poor relationship between growth ring width, density, MOE, and MOR with a determination coefficient of 0.0901–0.1855. This finding suggested that it was feasible to predict the flexural properties of Chinese fir plantation dimension lumber by average growth ring width after specimen group classification.  相似文献   

9.
Summary Two types of particleboards bonded with an isocyanate resin, one with uniform vertical density profile (homo-profile), and the other with conventional U-shaped profile, were fabricated to various density levels using lauan (Shorea spp.) particles. The fundamental relationships between the density profile and the board properties were determined, and the results are summarized as follows: 1. In homo-profile boards, the moduli of rupture (MOR) and elasticity (MOE), internal bond (IB) strength, and screw withdrawal resistance (SWR), are highly correlated to the board mean density. 2. The bottom limit of the board density is estimated to be ca. 0.25 g/cm3, based on the correlation regressions between mechanical properties and mean density. 3. At equal mean density level, the MOR and MOE of the conventional particleboards are higher than the homo-profile boards, due to the higher density near the faces. However, the reverse is true for IB, owing to the presence of the low density core in the former. 4. The net impact of peak density on MOR and MOE is greater at higher mean density level while raising the core density results in more pronounced improvement in IB at lower density. 5. In addition to the compaction ratio, the dimensional stability of the board is also affected by the peak area and mat moisture content. Received 9 January 1997  相似文献   

10.
Two main types of fiberboards were produced using lauan (Shorea spp.) fibers with an isocyanate resin as the binder; fiberboard with a flat, homogeneous (homoprofile), and typical U-shaped (conventional) density profile along the board thickness. The processing parameters included manipulation of mat moisture content distribution, press closing speed, and hot pressing method. The results are summarized as follows: (1) A larger variation was observed in the peak density (PD) and core density (CD) of fiberboards at 0.5g/cm3 mean density (MD) level than in those at 0.7 g/cm3. Generally, PD showed a greater variation than CD, irrespective of MD level. (2) Boards produced using two-step hot pressing recorded substantially higher PD with reduced CD. (3) Multiple regression analysis showed that CD and PD could be calculated based on the other profile defining factors, and a rough estimation for peak distance and gradient factor was possible. (4) Based on static bending, conventional fiberboard had a higher modulus of rupture (MOR) than the homo-profile board but a similar modulus of elasticity (MOE). (5) At 0.5 g/cm3 the MOR and dynamic MOE of fiberboard increased by up to 67% and 62%, respectively, when the PD increased from 0.5 to 1.07 g/cm3. Similarly, an increase of PD from 0.7 to 1.1 g/cm3 resulted in corresponding increases of 55% and 34% in the MOR and dynamic MOE of 0.7 g/cm3 boards. (6) The internal bond strength and screw withdrawal resistance were almost entirely dependent on the CD and MD, respectively. (7) Homo-profile fiberboards registered higher thickness swelling and water absorption than conventional fiberboards throughout the dry/wet conditioning cycle.  相似文献   

11.
The objectives of this study were to establish the method of evaluating wood mechanical properties by acoustic nondestructive testing at standing trees and at logs of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation, and to compare three acoustic nondestructive methods for evaluating the static bending modulus of elasticity (MOE), modulus of rupture (MOR), and compressive strength parallel-to-grain (σc) of plantation wood as well. Fifteen Chinese fir plantation trees at 36 years of age were selected. Each tree was cut into four logs, for which three values of dynamic modulus of elasticity, i.e., E sw, of the north and south face based on stress waves to assume the measuring state of the standing tree, E fr, longitudinal vibration, and E us, ultrasonic wave, were measured in the green condition. After log measurements, small specimens were cut and air-dried to 12% moisture content (MC). Static bending tests were then performed to determine the bending MOE and MOR, and compressive tests parallel-to-grain were made to determine σc. The bending MOE of small clear specimens was about 7.1% and 15.4% less than E sw and E us, respectively, and 11.3% greater than E fr. The differences between the bending MOE and dynamic MOE of logs as determined by the three acoustic methods were statistically significant (P < 0.001). Good correlation (R = 0.77, 0.57, and 0.45) between E sw, E fr, and E us and static MOE, respectively, were obtained (P < 0.001). It can be concluded that longitudinal vibration may be the most precise and reliable technique to evaluate the mechanical properties of logs among these three acoustic nondestructive methods. Moreover, the results indicate that stress wave technology would be effective to evaluate wood mechanical properties both from logs and from the standing tree.  相似文献   

12.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

13.
Seedlings of 22 species of conifers from across Canada were inoculated with m and r form isolates of the pinewood nematode (Bursaphelenchus xylophilus). In an experiment made under ambient (summer‐fall) temperatures in a shadehouse at Victoria, British Columbia, Canada, 8 of the 22 conifer species were killed by the nematodes, but mortality was low, i.e. 4–30%. Pines (eastern white, Jack and red) were more susceptible than other conifers. Yellow cypress, eastern white cedar, western red cedar and western hemlock were not killed by the nematodes. In a second experiment made at elevated temperatures (30°C‐16h long days, 25°C‐8 h long nights) in a greenhouse, 18 of the 22 conifer species died following nematode inoculation. Again, pines (lodgepole, eastern white, western white and red) were among the most susceptible tree species and the four conifers that were unaffected in the first experiment were not killed. Tamarack and western larch, both immune at ambient temperatures, were the two most susceptible conifers at elevated temperatures. Compared to ambient temperatures, seedlings at elevated temperatures died quicker and contained more nematodes. M and r form nematodes were equally pathogenic in both experiments.  相似文献   

14.
Black cottonwood (Populus trichocarpa Torr. and Gray) is a deciduous tree species that extends from Alaska through coastal regions of western Canada into the northwestern United States and as far south as Baja California. We examined the influence of black cottonwood on soil fertility within a forest dominated by Douglas-fir [Pseudotsuga menziessi (Mirb.) Franco], western hemlock [Tsuga heterophylla (Raf.) Sarg], and western red cedar (Thuja plicata Donn ex. D. Don.). Six circular 0.008 ha plots with a single cottonwood tree in the center of conifers were paired with six conifer plots (of the same size) without cottonwood. Litterfall, litter decomposition, properties of forest floor and mineral soil, and N mineralization were compared between plot types. Cottonwood litter had higher concentrations of almost all elements relative to conifer litter. Mass loss did not differ between cottonwood and fir/hemlock litter on cottonwood sites. Twice the amount of mull-like humus form (vermimull and mullmoder, 56%) was found in cottonwood plots compared to 28% in conifer plots. Higher pH (4.4) was found in the forest floor under cottonwood compared to conifer (3.9). Total N concentration (3.33 g/kg) and base saturation (68%) were higher in the mineral soil under cottonwood compared to conifers (2.98 g/kg total N and 50% base saturation). Net ammonification and net mineralization were both lower under cottonwood. These results suggest a variable effect of cottonwood on soil fertility within coastal western hemlock forests with some soil variables changed in a favourable direction and some in an unfavourable direction.  相似文献   

15.
Structural responses in the bark and wood were described following penetration by Armillaria ostoyae in the roots of 20‐ to 30‐year‐old Douglas‐fir, western hemlock and western redcedar trees. Tissue necrosis presumably caused by fungal exudates was commonly observed at inoculum contact. In Douglas‐fir and western hemlock, A. ostoyae interfered with the initiation of active defence mechanisms involving the development of a lignified zone of impervious tissue (IT), necrophylactic periderm (NP) formation and compartmentalization of infected woody tissue. Breaching of IT and NP barriers was frequent, particularly around the clusters of sclereid cells in western hemlock. In western redcedar, the IT zone was inconspicuous. Induced rhytidome formation occurred in western redcedar either simultaneously with or after completion of NP development. The formation of this tissue facilitated en masse sloughing of infected tissue from the surface of roots. In western redcedar, traumatic phloem resin ducts formed in tangential bands surrounding the margin of expanded lesions. Effective compartmentalization in western redcedar was achieved by a barrier zone comprised of a higher‐than‐average number of axial parenchyma that accumulated polyphenolic deposits. A combination of host‐mediated defence mechanisms in western redcedar resulted in a significantly higher frequency of effective resistance reactions than in western hemlock or Douglas‐fir.  相似文献   

16.
Vertical distribution of leaf area largely governs both tree structure and function. Models of this important tree attribute have been constructed for several commercially important conifers. However, a limited number of studies have compared alternative modeling techniques and inherent species differences. This study used several existing datasets for the five primary conifer species in Maine, namely balsam fir [Abies balsamea (L.) Mill.], northern white-cedar [Thuja occidentalis (L.)], eastern hemlock [Tsuga canadensis (L.) Carr.], eastern white pine [Pinus strobus (L.)], and red spruce [Picea rubens (Sarg.)] to examine species variation in total and vertical distribution of projected leaf area at the individual branch- and tree-levels. In addition, multiple methods for modeling the vertical distribution of leaf area were examined across the species. For a given branch diameter and location within the crown, eastern hemlock branches held the greatest amount of leaf area, followed by balsam fir, northern white-cedar, white pine, and red spruce. At the tree-level, eastern white pine held the greatest amount of leaf area followed by eastern hemlock, balsam fir, red spruce, and northern white-cedar for a given tree size. Across species, the two-parameter, right-truncated Weibull distribution performed the best for predicting vertical distribution of leaf area when compared to the four-parameter beta and Johnson's SB distributions (reduction of root mean square error of 1.7–21.1%). Northern white-cedar had a relative distribution of leaf area distinctly different than other species in this study with a mode shifted towards the upper crown. In contrast to red spruce and white pine, the mode of the relative distribution of leaf area for balsam fir and eastern hemlock occurred lower in the crown. Results of this study suggest that differences in total and vertical distribution of leaf area exist between species, but significant amounts of their variation are largely accounted for by bole and crown size.  相似文献   

17.
In a growth chamber experiment, 70-day-old seedlings of 10 conifer species were inoculated with Colletotrichum gloeosporioides conidia to determine the host range of the fungus. Based on the percentage of seedlings affected and the disease severity on individual seedlings, the order of most to least susceptibility was: western hemlock (WH), mountain hemlock, western larch, Sitka spruce, Engelmann spruce, Douglas-fir (coastal form, then interior form), white spruce and ponderosa pine; lodgepole pine and western red cedar remained unaffected. Inoculation of WH needles showed that within 24 h C. gloeosporioides conidia germinate and appressoria (penetration structures) form. A growth chamber study demonstrated that the pathogen can infect WH at needle wetness periods as short as 15 min; number of needles affected was higher at 0.5 h, but did not increase further even when wetness was extended up to 8 h. The results are discussed in relation to blight management of greenhouse-grown conifer seedlings.Portion of a Bachelor of Science (Honors) thesis, Department of Biology, University of Victoria, Victoria, British Columbia.  相似文献   

18.
ABSTRACT

Plantation forests play a critical role in forest management due to their high productivity and large contribution to carbon sequestration (CSE). The purpose of this study was to assess the CSE of plantations containing four important conifer species distributed across Taiwan, namely, the China fir (Cunninghamia lanceolata), Japanese cedar (Cryptomeria japonica), Taiwania (Taiwania cryptomerioides) and Taiwan red cypress (Chamaecyparis formosensis). Data regarding the plantations were obtained from a survey of permanent sample plots (PSPs). We used these data to calculate the CSE in each PSP and adopted CSEmean and CSEperiod as indicators to assess the CSE of the four conifers. According to the CSEmean obtained from analysis of variance and the least significant difference method, two groups were identified among these four conifers: the Japanese cedar (4.03 Mg ha?1 yr?1) and Taiwania (3.52 Mg ha?1 yr?1) yielded higher CSEmean values and the China fir (1.79 Mg ha?1 yr?1) and Taiwan red cypress (2.36 Mg ha?1 yr?1) yielded lower CSEmean values. The same patterns were observed in the CSEperiod values; however, no significant difference in CSEperiod was observed between Taiwan red cypress and either of the two groups. Therefore, Japanese cedar and Taiwania have high CSE potential among conifers.  相似文献   

19.
Abstract

Precommercial thinning (PCT) is often used to improve stand growth and value. While PCT may accelerate tree growth and reduce mortality, it may also have a negative effect on product quality. This study examined the effect of moderate and heavy thinning on tree growth, lumber recovery and quality in a natural balsam fir [Abies balsamea (L.) Mill.] PCT trial 35 years after thinning. Compared with the control, the heavy thinning increased merchantable tree diameter, stem volume per tree and lumber volume recovery per tree by 41.1%, 100.9% and 92.7%, respectively, reduced the Select Structural grade (the best grade) recovery by 33.7%. Thinning did not affect the no. 2 and better grade yield. There was a 12.2% and 15.0% difference, respectively, in the lumber bending modulus of elasticity (MOE) and modulus of rupture (MOR) between the control and heavy thinning. Moderate thinning had little impact on the visual grade recovery, lumber bending MOE and MOR. Heavy thinning is recommended if the goal is to get sizeable sawlogs in the shortest time, whereas moderate thinning is preferable if the intention is to minimize the negative effects on lumber quality while retaining modest tree growth and lumber recovery. Overall, PCT of very dense young balsam fir stands appears to be an effective and viable silvicultural treatment.  相似文献   

20.
The effect of plantation spacings (types A-E) on the bending strength and dynamic modulus of elasticity of 41-year-old Taiwan-grown cedar (Cryptomeria japonica D. Don) was investigated. The results indicate that the highest values for the static bending modulus of elasticity (MOE), modulus of rupture (MOR), and dynamic modulus of elasticity (ED, E Dt) occurred in trees obtained from those most densely planted (type A); there was a significant difference between type A and the other four spacing types (B, C, D, and E), but there were no significant differences among those four types. Interrelations among MOE, MOR, E D, and E Dt could be represented by positive linear regression formulas, which revealed highly significant differences. The relations among the square value of stress-wave transmission velocity (Vt 2 and Vt 2) and MOE, MOR, E Dl, and E Dt, respectively, could be represented by positive linear regression formulas. The differences were highly significant.Part of this report was presented at the International Wood Engineering Conference '96, New Orleans, LA, USA, October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号