首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ground-based search for stratospheric chlorine monoxide was carried out during May and October 1981 with an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric nitric acid and tropospheric carbonyl sulfide were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of chlorine monoxide in this same region were not seen. Stratospheric chlorine monoxide is less abundant by at least a factor of 7 than is indicated by in situ measurements, and the upper limit for the integrated vertical column density of chlorine monoxide is 2.3 x 10(13) molecules per square centimeter at the 95 percent confidence level. These results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone than is currently thought.  相似文献   

2.
Densities of nuclear tracks exceed 10(11) per square centimeter in several percent of the micrometer-size silicate grains from all depths in the 12-and 60-centimeter lunar cores. Either these grains were irradiated in space as extralunar dust or the ratio of iron to hydrogen in low-energy (about 1 million electron volts per nucleon) solar particles is orders of magnitude higher than in the photosphere.  相似文献   

3.
Hybrid nanorod-polymer solar cells   总被引:1,自引:0,他引:1  
We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum. A photovoltaic device consisting of 7-nanometer by 60-nanometer CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of 6.9% under 0.1 milliwatt per square centimeter illumination at 515 nanometers. Under Air Mass (A.M.) 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.  相似文献   

4.
A soft x-ray laser (wavelength lambda = 15.5 nanometers) was used to create a moiré deflectogram of a high-density, laser-produced plasma. The use of deflectometry at this short wavelength permits measurement of the density spatial profile in a long-scalelength (3 millimeters), high-density plasma. A peak density of 3.2 x 10(21) per cubic centimeter was recorded.  相似文献   

5.
A pulsed ruby laser (wavelength, 694.3 nanometers) was used to measure the dependence on light intensity of light-induced electron paramagnetic resonance (ERR) signal 1 for short flashes of uniform duration (400 microseconds). Approximately 10(18) photons per square centimeter per flash from the unattenuated beam were available to the sample of subchloroplast "system 1" particles from spinach. The experimental dependence of the EPR signal height plotted as a function of the total number of incident photons per flash was exponential. From measurement of the slope at a very low relative photon flux and the saturated EPR signal amplitude, the value for the cross section or "effective size" of the light-induced paramagnetic unit, sigma(EPR), was found to be 300 x 10(-17) square centimeter. This result is compared with a measured optical absorption cross section, sigma(694nm), of 2.5 x 10(-17) square centimeter, for the identical sample at the laser wavelength. The hundredfold difference in size supports the thesis that the paramagnetic state is a property of an aggregate of chlorophyll molecules of the same general size as the photosynthetic unit.  相似文献   

6.
Efficient photochemical water splitting by a chemically modified n-TiO2   总被引:4,自引:0,他引:4  
Although n-type titanium dioxide (TiO2) is a promising substrate for photogeneration of hydrogen from water, most attempts at doping this material so that it absorbs light in the visible region of the solar spectrum have met with limited success. We synthesized a chemically modified n-type TiO2 by controlled combustion of Ti metal in a natural gas flame. This material, in which carbon substitutes for some of the lattice oxygen atoms, absorbs light at wavelengths below 535 nanometers and has a lower band-gap energy than rutile (2.32 versus 3.00 electron volts). At an applied potential of 0.3 volt, chemically modified n-type TiO2 performs water splitting with a total conversion efficiency of 11% and a maximum photoconversion efficiency of 8.35% when illuminated at 40 milliwatts per square centimeter. The latter value compares favorably with a maximum photoconversion efficiency of 1% for n-type TiO2 biased at 0.6 volt.  相似文献   

7.
A glass filter from Surveyor 3 has a surface density of approximately 1 x 10(6) tracks per square centimeter from heavy solar flare particles. The variation with depth is best fitted with a solar particle spectrum dN/dE = 2.42 x 10(6) E(-2) [in particles per square centimeter per year per steradian per (million electron volts per nucleon)], where E is the energy and N is the number of particles, from 2 million electron volts per nucleon to approximately 7 million electron volts per nucleon and dN/dE = 1.17 x 10(7) E(-3) at higher energies. Not much difference is observed between 0.5 and 5 micrometers, an indication that there is a lack of track-registering particles below 0.5 million electron volts per nucleon. The Surveyor data are compatible with track results in lunar rocks, provided an erosion rate of approximately 10(-7) centimeter per year is assumed for the latter. The results also suggest a small-scale erosion process in lunar rocks.  相似文献   

8.
The helium-4 solar wind flux during the Apollo 11 lunar surface excursion was (6.3 +/- 1.2) x 10(6) atoms per square centimeter per second. The solar wind direction and energy are essentially not perturbed by the moon. Evidence for a lunar solar wind albedo was found.  相似文献   

9.
A method for the fast measurement of the diffusion coefficients of both small and large molecules in thin capillaries is reported. The method relies on Taylor-Aris dispersion theory and uses standard instrumentation for capillary zone electrophoresis. With this equipment, which consists of thin capillaries (50 to 100 micrometers in inner diameter), an injection system, detector ports, and computer data acquisition, a sample plug is pumped through the capillary at known velocity and the peak dispersion coefficient (D(*)) is measured. With the experimentally measured values of D(*) and flow velocity, and knowledge of the inner diameter of the capillary, the molecular diffusion coefficient (D) can be rapidly derived. For example, for ovalbumin a D value of 0.759 x 10(-6) square centimeter per second is found versus a tabulated value of 0.776 x 10(-6) square centimeter per second (error, 2 percent). For hemoglobin a D value of 0.676 x 10(-6) square centimeter per second is obtained versus a literature value of 0.690 x 10(-6) square centimeter per second (error, 1.5 percent).  相似文献   

10.
A 12-day series of 1749 profiles of turbulent kinetic energy dissipation above the equatorial undercurrent at 140 degrees west showed that, in the upper 110 meters of the ocean, the dissipation radically decreased during the solar heating period each day. Daily averages were linearly related to the local wind power. When integrated over the depth range of 10 to 110 meters, the dissipation was 10.6 ergs per square centimeter per second or 0.92 +/- 0.10 percent of the wind power, a proportion not substantially different from those found in mid-latitude surface mixed layers. These results suggest that much of the energy dissipated above the equatorial undercurrent may be extracted directly from the local wind.  相似文献   

11.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

12.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

13.
Beryllium-10 (10Be) in excess of that expected from in situ cosmic ray spallation reactions is present in lunar surface soil 78481; its presence was revealed with a sequential leaching technique. This excess 10Be, representing only 0.7 to 1.1% of the total 10Be inventory, is associated with surface layers (<1 micrometer) of the mineral grains composing 78481. This excess 10Be and its association with surficial layers corresponds to (1.9 +/- 0.8) x 10(8) atoms per square centimeter, requiring a 10Be implantation rate of (2.9 +/- 1.2) x 10(-6) atoms per square centimeter per second on the surface of the Moon. The most likely site for the production of this excess (10)Be is the Sun's atmosphere. The 10Be is entrained into the solar wind and transported to the lunar surface.  相似文献   

14.
Helium is removed at an average rate of 10(6) atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on Earth, suggesting comparable abundances of crustal uranium and thorium.  相似文献   

15.
The rare gas distribution in lunar soil, breccias, and rocks was studied with a micro-helium-probe. Gases are concentrated in grain surfaces and originate from solar wind. Helium-4 concentrations of different mineral components vary by more than a factor of 10 apart from individual fluctuations for each type. Also grains with no detectable helium-4 exist. Titanium-rich components have the highest, calcium-rich minerals the lowest concentrations. The solar wind was redistributed by diffusion. Mean gas layer thicknesses are 10, 6, and 5 microm for helium, neon, and argon respectively. Lithic fragments in breccias contain no solar gases. Glass pitted surfaces of crystalline rocks contain about 10(-2) cubic centimeter of helium-4 per square centimeter. Etched dust grains clearly show spallogenic and radiogenic components. The apparent mean exposure age of dust is approximately 500 x 10(6) years, its potassium-argon age is approximately 3.5 x 10(9) yerars. Cavities of crystalline rocks contain helium-4, radiogenic argon, H(2), and N(2).  相似文献   

16.
The mean flux of radon-222 atoms from the island of Hawaii is 0.45 atom per square centimeter per second. Lava fields occupy 50 percent of the land area, but their radon flux is only 1 percent of that from deep volcanic soils. The island yields approximately 10 curies of radon-222 per hour to the air surrounding it. The radon-222 contribuition of volcanoes is negligible.  相似文献   

17.
We describe a general method for producing ultrahigh-density arrays of aligned metal and semiconductor nanowires and nanowire circuits. The technique is based on translating thin film growth thickness control into planar wire arrays. Nanowires were fabricated with diameters and pitches (center-to-center distances) as small as 8 nanometers and 16 nanometers, respectively. The nanowires have high aspect ratios (up to 10(6)), and the process can be carried out multiple times to produce simple circuits of crossed nanowires with a nanowire junction density in excess of 10(11) per square centimeter. The nanowires can also be used in nanomechanical devices; a high-frequency nanomechanical resonator is demonstrated.  相似文献   

18.
The fabrication and characterization of a glass containing a regular parallel array of submicrometer channels or capillaries are described. The capillaries are arranged in a two-dimensional hexagonal close packing configuration with channel diameters as small as 33 nanometers and packing densities as high as 3 x 10(10) channels per square centimeter. The high-temperature stability of the nanochannel glass array is well suited as a host or template for the formation of quantum confined semiconductor structures or as a mask for massively parallel patterned lithographic applications.  相似文献   

19.
Shi G  Jin S  Xue G  Li C 《Science (New York, N.Y.)》1995,267(5200):994-996
Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.  相似文献   

20.
Long, nanometer-size metallic wires can be synthesized by injection of the conducting melt into nanochannel insulating plates. Large-area arrays of parallel wires 200 nanometers in diameter and 50 micrometers long with a packing density of 5 x 10(8) per square centimeter have been fabricated in this way. When charged, the ends of the wires generate strong, short-range electric fields. The nanowire electric fields have been imaged at high spatial resolution with a scanning force microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号