首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
三江平原稻田蒸散量模拟研究   总被引:2,自引:0,他引:2  
基于2005-2007年涡度相关系统测量值和小气候观测资料,比较分析Penman、Penman-Monteith和Priestley-Taylor模型对三江平原稻田5-10月蒸散量的模拟效果。结果表明,3个模型参数采用常规参数时,Penman模型模拟值明显大于测量值,平均高估103.5%;但Penman-Monteith和Priestley-Taylor模型模拟效果较好,平均偏差分别为0.26和0.02mm·d-1,均方根误差分别为0.68和0.71mm·d-1。Penman和PenmanMonteith模型作物系数(Kc)与叶面积指数均呈极显著正相关关系,Priestley-Taylor模型修正式参数α值与叶面积指数、饱和水汽压差和风速均为正相关关系,且与饱和水汽压差和风速相关性达极显著水平。依据多元线性回归方程校正模型参数后,Penman模型模拟精度显著提高,平均偏差和均方根误差分别为0.28和0.64mm·d-1,模拟效率由负值转变为正值0.75。而Penman-Monteith和Priestley-Taylor模型模拟精度没有明显改变。方差分析进一步表明校正模型参数后3个模型的估算值没有显著性差异,说明3个模型对三江平原稻田蒸散量的估算精度一致。由此可见,Penman-Monteith和Priestley-Taylor模型无论是否校正作物系数或参数α,均适于估算三江平原稻田蒸散量,而Penman模型需在修正作物系数后方可用于估算三江平原稻田蒸散量。  相似文献   

2.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   

3.
冬小麦拔节抽穗期作物系数的研究   总被引:4,自引:1,他引:4  
在2000~2004年4个冬小麦生长季节研究了冬小麦拔节抽穗期农田蒸散量和参考作物腾发量(FAO56 PM方法计算)的关系,以及作物系数和叶面积指数及作物株高的关系。研究发现在冬小麦拔节抽穗前期,参考作物腾发量要大于或者接近于农田蒸散量,而在后期则要明显小于农田蒸散量。作物系数随着叶面积指数的增加和株高的增加而增加。用2003和2004年的数据回归建立了叶面积指数和株高与作物系数的数学表达式,并计算了2001和2002年的农田蒸散量。结果显示用叶面积和株高两种方法都能够很好的估算农田蒸散量。但是当农田蒸散量小于3 mm/d时,计算值要小于观测值。用叶面积指数和株高两种方法计算的农田蒸散量没有明显差别,说明用株高计算农田蒸散量是可行的。  相似文献   

4.
交替隔沟灌溉制度对制种玉米耗水规律和产量的影响   总被引:3,自引:1,他引:2  
该文研究交替隔沟灌溉下不同灌溉制度对制种玉米耗水规律和产量的影响。以制种玉米"金西北22号"为供试材料,2014年在大田条件下采用垄植沟灌技术,设置7种灌溉制度:全生育期充分供水(CK)、仅苗期中度亏水(T1)、仅苗期重度亏水(T2)、仅穗期中度亏水(T3)、仅穗期重度亏水(T4)、仅花粒期中度亏水(T5)和仅花粒期重度亏水(T6),分析灌溉制度对玉米耗水强度、作物系数、籽粒产量和水分利用效率(wateruseefficiency,WUE)的影响。结果表明:CK下制种玉米生长期内的耗水量、平均作物系数和籽粒产量均最大,分别是494mm、0.86和6478kg/hm~2。与CK相比,任一亏水处理均降低制种玉米全生育期的平均耗水强度,且T6处理下全生育期的平均耗水强度较T5处理的相应值明显减少(P0.05);任一生育期亏水均降低该生育阶段的作物系数。T2、T3、T4、T5和T6处理的籽粒产量较CK明显降低,降幅分别是13.29%、15.48%、28.13%、14.06%和19.87%(P0.05);而T1处理的籽粒产量较CK差异不显著(P0.05),与此同时,T1处理下玉米的耗水量较CK下降20.44%,使其WUE最大(1.55 kg/m~3)、灌溉水WUE最大(2.54kg/m~3)。可见,交替隔沟灌溉下采用苗期中度亏水、其他生育期内充分供水的灌溉制度可明显提高制种玉米的水分利用效率,同时不显著降低产量。该研究结果对河西走廊地区制种玉米灌溉管理具有重要指导意义。  相似文献   

5.
覆膜滴灌棉田蒸散量的模拟研究   总被引:5,自引:1,他引:4  
通过综合考虑影响作物蒸散量的土壤、作物、大气3方面因子,结合新疆滴灌棉田覆膜栽培的生产实际,设计了不同覆盖度和品种试验,以Penman-Montieth方程估算参考作物蒸散量,确定了不同覆盖度及品种条件下的作物系数,并在此基础上实现了覆膜滴灌棉田蒸散量较为准确地估计。试验结果认为覆膜滴灌棉田全生育期蒸散量在540~620 mm之间,全生育期蒸散量和作物系数都随着覆盖度的增加而减小,叶面积指数与日蒸散量及作物系数关系密切,品种间由于品种特性的差异而引起的叶面积指数变化,最终导致了品种间作物系数Kc的不同。  相似文献   

6.
为了在气象要素类型不完整条件下采用Penman-Monteith方法估算小麦生长季蒸散量,运用2014/2015和2015/2016年度两个小麦生长季新乡历史日天气预报数据和对应日气象实测数据,以及修正后的太阳辐射参数和调节系数,首先验证天气预报气温值的准确性,并以预报气温为基础,估算实际水汽压和太阳辐射,最后利用天气预报气温和平均风速值,以Penman-Monteith公式为基础估算参考作物蒸散量。结果表明:日天气预报温度数据可以代替气温观测数据;用天气预报中的最高和最低气温估算的水汽压和太阳辐射能满足Penman-Monteith公式的要求;用天气预报数据估算的辐射项的精度高于空气动力项的精度。总体上,用天气预报数据估算的日参考作物蒸散量中辐射项的精度高于空气动力项,用天气预报估算值总体偏低,但低估范围在7%之内,经统计分析,用天气预报估算与利用Penman-Monteith估算的日参考作物蒸散量相关性较高(R2=0.77)。因此,采用日天气预报的气象资料估算参考作物蒸散量这一方法可行,建议在干旱半干旱地区采用辐射法估算参考作物蒸散量,这给农业灌溉预报提供了理论和方法上的保证,并对指导当地农业水资源的优化配置具有参考意义。  相似文献   

7.
基于Penman-Monteith方程的温室番茄蒸腾量估算模型   总被引:1,自引:1,他引:0  
作物的蒸腾是作物生命过程中十分重要的组成部分。为寻求适合于温室栽培条件下番茄植株蒸腾量的计算模型,本文以Penman-Monteith方程为基础,针对温室特定的小气候环境,对番茄冠层整体气孔阻力、空气动力学阻力等参数进行合理修正,建立了包含气象数据、番茄叶面积指数和冠层高度为主要参数的温室番茄蒸腾量估算模型。分别采用2009年5月2-13日(开花坐果期)和2009年6月9-20日(成熟采摘期)2个时段内的实测蒸腾量对模型模拟结果进行验证,2个时段内模型模拟结果的平均相对误差分别为8.48%和9.20%,表明所建模型可以较好地的计算温室番茄的蒸腾量。本研究提出的蒸腾量估算模型对温室番茄作物水分关系的深入研究具有重要参考价值。  相似文献   

8.
准确估算蒸散量对于精准管理农田水分至关重要。为了解作物系数的动态特征,准确估算作物需水量,使用叶面积指数和气象要素模拟玉米全生育期作物系数及蒸散量。利用2018年五道沟实验站气象和称重式蒸渗仪实测数据,运用通径分析法筛选影响作物系数的关键因子,建立无雨期不同地下水埋深下作物系数模型,以此估算蒸散量。结果表明:1 m埋深下全生育期作物系数平均绝对误差为0.04 mm/d,相关系数为0.94,其中初期、发育期、中期和后期平均绝对误差分别为0.06、0.09、0.05和0.03 mm/d。3 m埋深下全生育期作物系数平均绝对误差为0.08 mm/d,相关系数为0.92,各生育期平均绝对误差分别为0.11、0.10、0.07和0.03 mm/d,利用温度、风速和叶面积指数模拟作物系数精度较高。1 m埋深全生育期ET平均绝对误差为0.72 mm/d,各生育阶段平均绝对误差分别为0.56、059、0.66和0.45 mm/d。3 m埋深全生育期ET平均绝对误差为0.73mm/d,各生育阶段ET平均绝对误差分别为0.82、0.98、0.68和0.29mm/d。不同时间尺度下(1、3、5 d) 2种埋...  相似文献   

9.
基于蒸发皿蒸发量的椰糠盆栽番茄适宜灌溉量估算与试验   总被引:2,自引:1,他引:1  
目前以实测蒸腾量、田间持水量或累计太阳辐射作为灌水依据建立的温室作物蒸腾模型中,其灌水依据的确定所需监测参数项多,且对监测仪器精度要求较高。基于此,该研究以20 cm蒸发皿蒸发量为灌水依据,设置日光温室椰糠盆栽番茄3个生育时期的不同蒸发皿系数灌水量水平(苗期:0.2(ET1)、0.4(ET2)、0.6(ET3);开花坐果期:0.3(ET1)、0.5(ET2)、0.7(ET3);成熟采摘期:0.7(ET1)、0.9(ET2)、1.1(ET3)),对番茄株产量、水分利用效率(Water Use Efficiency,WUE)及品质进行综合评价,筛选出较优灌水量水平;基于较优灌水量水平建立蒸腾模型,并以其余两个处理实测值对模型进行验证。结果表明:ET2处理株高、可溶性糖和可溶性蛋白质含量分别显著高于其他处理8.54%~14.27%、28.61%~32.99%和38.70%~70.83%;相较于ET3处理,ET2处理可在仅降低株产量2.50%情况下提高WUE10.05%和节约灌水量22.23%。对株产量、WUE及品质进行主成分分析,综合得分最高处理为ET2;各因子对日蒸腾量的影响程度大小依次为日累积净辐射(M)、日平均温度(T)、叶面积指数(Leaf Area Index,LAI),日蒸腾量与M、T和LAI均呈极显著正相关;该研究基于ET2处理所建立的椰糠栽培番茄蒸腾模型拟合较好,均方根误差为49.88 g,相对误差为11.88%。研究结果可为日光温室椰糠栽培番茄高效生产和智能化灌溉提供科学依据和决策参考。  相似文献   

10.
探究不同灌溉量和有机无机肥配施的组合处理对冬小麦生长及水分利用效率的影响,为冬小麦的科学施肥管理提供参考。以关中地区冬小麦‘小偃22’为研究对象,通过田间试验,采用等氮原则对有机肥与无机肥进行不同比例配施(F1,100%无机肥;F2,24%有机肥+76%无机肥;F3,48%有机肥+52%无机肥),结合2个水平的灌溉(充分灌溉W1和亏缺灌溉W2),共设计6个灌溉施肥组合处理(W1F1、W1F2、W1F3、W2F1、W2F2和W2F3)。通过测定冬小麦的生长指标(植株株高和叶面积指数)、0~200cm土层土壤体积含水率(以20cm为深度间隔)和小麦的产量及构成要素(干物质量、穗长、有效穗数、千粒质量和籽粒产量),分析灌水量与有机无机肥配施对冬小麦生长及水分利用效率(WUE)的影响。结果表明:(1)充分灌溉(W1)条件下,F2、F3处理株高较F1处理分别提高3.4%~21.2%和0.8%~15.9%,叶面积指数提高5.7%~18.5%和16.8%~47.4%,干物质量提高12.1%~26.1%和21.1%~36.0%,穗长提高12.5%和14.5%,有效穗数提高6.6%和9.3%,千粒质量提高18.3%和24.4%,籽粒产量提高14.8%和28.6%,WUE提高14.6%和27.5%;亏缺灌溉(W2)条件下,与F1处理相比,F2、F3处理株高分别提高8.5%~16.2%和0.5%~10.6%,叶面积指数提高4.9%~20.7%和17.0%~50.0%,干物质量提高7.7%~25.7%和15.0%~34.6%,穗长提高12.3%和18.5%,有效穗数提高7.4%和18.0%,千粒质量提高15.3%和25.1%,籽粒产量提高13.1%和31.8%,WUE提高21.4%和35.2%。在相同灌溉水平下,有机无机肥配施处理可以提高土壤体积含水率。(2)W2F2处理对冬小麦株高增长最有效,灌浆期达最大值,较W1F1处理增长10.4%;W2F3处理对冬小麦叶面积指数、干物质量、穗长、有效穗数、千粒质量影响最大,成熟期较W1F1处理分别提高23.6%、39.0%、20.3%、18.4%和33.1%。(3)W2F3处理对冬小麦籽粒产量和WUE的影响最为显著,W1F1、W1F2、W1F3、W2F1和W2F2处理籽粒产量分别提高了35.5%、18.0%、5.3%、31.8%和16.6%;W1F1、W1F2、W1F3、W2F1和W2F2处理WUE分别提高了52.6%、33.2%、19.7%、35.2%和21.4%。亏缺灌溉与48%有机肥+52%无机肥组合处理的冬小麦籽粒产量和WUE最高,该灌溉施肥管理方案为关中平原及环境相似地区冬小麦的科学施肥管理提供了科学依据。  相似文献   

11.
Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain, is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting of the winter wheat. In order to improve irrigation efficiency in this region of serious water shortage, field studies in 1999 and 2001, two dry seasons with less than average seasonal rainfall, were conducted with up to five irrigation applications to determine evapotranspiration, calculate the crop coefficient, and optimize the irrigation schedule with maize under mulch, as well as to establish the effects of irrigation timing and the number of applications on grain yield and water use efficiency (WUE) of maize. Results showed that with grain production at about 8 000 kg ha^-1 the total evapotranspiration and WUE of irrigated maize under mulch were about 380-400 mm and 2.0-2.2 kg m^-3, respectively. Also in 2001 WUE of maize with mulch for the treatment with three irrigations was 11.8% better than that without mulch. In the 1999 and 2001 seasons, maize yield significantly improved (P = 0.05) with four irrigation applications, however, further increases were not significant. At the same time there were no significant differences for WUE with two to four irrigation applications. In the 2001 season mulch lead to a decrease of 50 mm in the total soil evaporation, and the maize crop coefficient under mulch varied between 0.3-1.3 with a seasonal average of 1.0.  相似文献   

12.
基于负压灌溉系统的温室番茄蒸发蒸腾量自动检测   总被引:2,自引:2,他引:0  
针对目前关于作物蒸发蒸腾量测量方法中存在测定成本高、工作强度大及精确度差等问题,设计了一种测量作物蒸发蒸腾量的负压灌溉系统(negative pressure irrigation,NI)。为验证测量结果的精确性,以水量平衡法为对照(CK),采用田间小区定位试验,研究了NI条件下日光温室番茄周年土壤水分动态变化,并对比分析了温室番茄蒸发蒸腾量及水分利用效率。结果表明:NI条件下的温室番茄0~20 cm土壤含水率及0~100 cm土体贮水量变化稳定,周年变化幅度分别为21.4%~23.8%和322.2~333.3 mm。负压灌溉系统测量的春茬番茄蒸发蒸腾量呈单峰曲线变化,季节变化幅度为0.46~5.68 mm,最高值出现在5月20日;秋茬番茄的蒸发蒸腾量季节变化幅度小于春茬番茄,仅为0.56~3.43 mm,最高值出现在10月12日。NI测定的番茄周年蒸发蒸腾量为533.4 mm,低于CK计算结果(541.6 mm),但并无显著性差异(P0.05)。2种方法测定的周年蒸发蒸腾量呈极显著线性正相关关系(P0.01),相对误差绝对值的平均仅为3.83%~7.71%,绝对误差绝对值的平均也只有2.14~5.08 mm。2种方法得到的温室番茄水分利用效率也无显著性差异。综合分析,负压灌溉系统能够实现温室番茄蒸发蒸腾量的计算,其结果不仅与水量平衡法无显著差异,而且简便快捷、使用成本低、测定结果可靠,为温室作物的蒸发蒸腾量测量提供了新的技术手段。  相似文献   

13.
本文基于作物系数法并结合植被遥感信息(MODIS/NDVI),提出一种能反映作物空间分布和土壤供水差异信息的作物蒸散量估算模型。利用该模型得到2000—2013年华北平原冬小麦的蒸散量,模拟结果与遥感蒸散产品吻合度较高(R2=0.952,RMSE=1.3×107 m3),并分析了冬小麦蒸散量和灌溉耗水量的时空变化。结果表明:1华北平原冬小麦蒸散量呈南高北低的格局。基于250 m空间分辨率上来看,山东省、河南省的黄河灌区以及太行山前平原的冬小麦蒸散量可达400 mm以上,中部平原区冬小麦蒸散量350 mm,滨海一带蒸散量200 mm。2冬小麦灌溉耗水量与其蒸散量格局相一致。在太行山前平原、河南省和山东省的引黄灌区,灌溉耗水量可达250 mm以上;河北平原北部由于冬小麦种植比例较低,灌溉耗水量100 mm。3近14年河北平原北部冬小麦播种面积下降明显,区域灌溉耗水量减少,地下水位下降趋势得到明显缓解。本文提出的作物蒸散量估算模型能够较好地用于确定较大区域作物蒸散耗水量,并可应用于区域作物灌溉量的评估与管理中。  相似文献   

14.
基于温室环境和作物生长的番茄基质栽培灌溉模型   总被引:3,自引:3,他引:0  
为解决涵盖土壤蒸发和作物冠层蒸腾的土培作物蒸散模型不能直接应用于稻壳炭基质栽培番茄灌溉的问题,该研究首先通过修改Penman-Monteith模型的原始表达式来去除土壤蒸发部分,并引入TOMGRO模型来模拟番茄冠层生长,给出了阻抗参数的修正计算,得到了新的番茄基质栽培蒸腾模型。考虑到蒸腾模型中净辐射项削弱了室外太阳辐射对冠层及以下部整株植株的耗水影响,进而将新的蒸腾模型与太阳辐射线性比例供水模型结合建立蒸腾-辐射综合灌溉模型。结果表明,蒸腾-辐射综合灌溉模型对上海崇明A8温室番茄灌溉量的模拟结果与实际结果之间的相关系数高于0.95,平均相对误差小于20%。这说明蒸腾-辐射综合灌溉模型能够较好地估算温室稻壳炭基质栽培番茄的灌溉需水量,对深入研究温室灌溉实施具有参考价值。  相似文献   

15.
基于临界氮浓度模型的日光温室甜椒氮营养诊断   总被引:4,自引:4,他引:4  
临界氮浓度稀释曲线是诊断作物氮营养状况的有效手段。该研究基于2 a温室小区试验,以参考作物蒸发蒸腾量(reference crop evapotranspiration,ET0)为基准,设置4个灌溉水平(105%ET0、90%ET0、75%ET0、60%ET0)和4个氮素水平(300、225、150、75 kg/hm2),构建和验证基于地上部生物量的甜椒在不同水分条件下的临界氮浓度稀释曲线经验模型。结果表明,植株氮素吸收量、地上部生物量、经济产量和水分利用效率(water use efficiency,WUE)随灌水量增加呈先增加后减小的趋势;灌溉水平75%ET0和90%ET0下,最优施氮量差异较小,且可获得较高经济产量和WUE,但经济产量和WUE不能同时达到最佳。75%ET0灌溉水平可获得高于90%ET0灌溉水平约11%的水分利用效率,且经济产量仅降低约3%,鉴于研究区水资源较短缺,灌水量75%ET0施氮量190 kg/hm2左右为最佳策略。该研究可为西北地区温室甜椒实时精准灌水施氮提供理论依据和技术支持。研究可为西北地区温室甜椒实时精准灌水施氮提供理论依据和技术支持。  相似文献   

16.
为了探讨SIMDual Kc模型在西北地区温室环境不同水分处理的适用性,以番茄为材料,于2013-2015年在陕西省杨凌区温室内进行亏水处理试验,设置全生育期充分灌水处理、仅发育期亏水50%处理、发育期中期连续亏水50%和全部亏水50%共4种水分处理,通过2013-2014年试验数据对SIMDual Kc模型进行率定,采用2014-2015年试验数据对模型进行验证,并通过模型将土壤蒸发量和番茄蒸腾量分开,利用模拟结果分析不同水分处理对土壤蒸发量和番茄蒸腾量的影响。结果表明:模型模拟不同水分处理蒸发蒸腾量与实测值有较好的一致性,其绝对误差为0.22~0.33 mm/d,均方根误差为0.26~0.48 mm/d、决定系数为0.51~0.81。该模型可以准确的将不同水分处理土壤蒸发量和作物蒸腾量分开,且土壤蒸发量模拟值与实测值有较好的一致性,其绝对误差为0.016~0.024 mm/d,均方根误差为0.013~0.034 mm/d和决定系数为0.63~0.84;通过模拟得到的番茄蒸腾量计算不同水分处理的水分亏缺系数,研究表明水分亏缺系数随亏水时间的增加而降低,复水后水分亏缺系数有不同程度的增加,且发育期、中期和后期连续亏水50%时,后期时水分亏缺系数降到最低,为0.63。因此该模型在西北地区温室环境下非充分灌溉条件下有一定的适用性。除此之外,研究通过模拟结果分析非充分灌水下番茄的响应及复水后的补偿机制,为非充分灌水条件下番茄栽培提供理论依据。  相似文献   

17.
日光温室覆膜滴灌条件下樱桃西红柿耗水规律   总被引:4,自引:1,他引:3  
为了给温室膜下滴灌灌溉制度的制定提供参考,通过大型称重式蒸渗仪实测覆膜滴灌条件下樱桃西红柿蒸腾量,分析了温室微环境气象条件及水面蒸发量的变化规律,计算了日光温室春夏茬樱桃西红柿在覆膜滴灌条件下不同生育阶段的耗水强度、作物系数及蒸发皿系数。结果表明:日光温室覆膜滴灌条件下,樱桃西红柿在不同生育阶段的耗水强度、作物系数和蒸发皿系数分别为:苗期0.22 mm/d、0.09、0.10;开花坐果期1.65 mm/d、0.48、0.65;盛果期2.56 mm/d、1.56、1.76;盛果后期1.90 mm/d、1.12、2.06;该研究建立了温室樱桃西红柿累计耗水量与水面蒸发量累积值、温室温度累计值之间函数关系,为合理地制定温室作物灌溉制度提供了一定依据。  相似文献   

18.
旱农区水磷耦合效应对春小麦产量和水分利用效率的影响   总被引:11,自引:0,他引:11  
1997年在我国典型干旱半干旱甘肃定西地区,研究了水分和磷素处理对春小麦生长和水分利用影响,结果表明:春小麦产量和水分利用效率与有限灌溉和施磷之间有密切的关系,尤其是水分的作用最为关键,播前土壤极其干旱条件下,浇灌底墒水而整个生育期不浇水,可促进作物对土壤水分的充分利用,比对照(不浇水)土壤水分利用提高了241.96%,产量是对照的2.76倍,水分利用效率(以籽粒为准)提高了35.62%。在不同水分条件下,磷素对产量和水分利用效率提高呈现正效应,在浇水情况下,施磷比不施磷产量和水分利用效率分别提高8.64%、14.37%,不浇水情况下,施磷比不施磷产量和水分利用效率分别提高29.79%、4.77%。  相似文献   

19.
为探究适于晋西黄土区果农间作系统滴灌水肥一体化管理制度,以典型的苹果-大豆间作系统为研究对象,设置灌水和施肥两因素,分析不同水肥调控措施对土壤含水量分布、苹果和大豆光合生理特征、大豆生长和产量以及间作系统水分利用等指标的影响。试验在大豆4个关键需水期进行灌水,肥料随灌溉水施入,每次设置不同灌水上限和施肥水平,4个灌水量上限水平分别为:田间持水量(Fc)的60%(W1),70%(W2),80%(W3)和90%(W4),3个施氮水平:纯N 59.40 kg/hm^2(F1),92.00 kg/hm^2(F2),124.32 kg/hm^2(F3),对照处理(CK)整个生育期不灌水不施肥,仅在播种前施入基肥。结果表明:各水肥处理土壤含水量在水平和垂直方向上具有显著差异,灌水量对土壤含水量的影响程度高于施肥量和水肥交互作用。苹果和大豆的净光合速率(Pn)和蒸腾速率(Tr)的日变化特征相似,均为单峰型曲线,最大值均为W3F2处理。各处理大豆株高、茎粗和叶面积指数(LAI)分别较对照组提高了1.3%~32.3%,2.8%~33.9%和3.4%~125.9%,其中最大值均出现在W3F2处理,该处理大豆产量和间作系统水分利用效率(WUE)也最优,较其他处理分别提高了10.9%~99.3%和8.0%~70.0%。在播种至出苗期、幼苗期至分枝期、开花结荚期和鼓粒期可以设置80%Fc的灌水上限,同时在大豆幼苗期至分枝期、结荚期和鼓粒期分别施加92.00 kg/hm^2的氮肥,该水肥管理方式使苹果—大豆间作系统获得较高的作物产量及水分利用效率,可为该地区间作系统滴灌水肥一体化管理提供参考。  相似文献   

20.
微喷灌对夏玉米产量和水分利用效率的影响   总被引:4,自引:0,他引:4  
为研究微喷灌对夏玉米产量和水分利用效率(WUE)的影响,本试验在旱棚条件下以郑单958为试验材料,设置2种灌水方式:微喷灌P(灌水定额:38 mm/次)和畦灌Q(灌水定额:75 mm/次),3种灌水次数:1次(W1)、2次(W2)和3次(W3),采用土壤水分测定仪实时监测整个夏玉米生长季多土层(0~200 cm)土壤体积含水量的动态变化。结果表明,在2种灌水模式下,随着灌水次数的增加(总灌水量增加),夏玉米产量呈增加趋势;相同灌水次数下,微喷灌处理的产量均低于畦灌。与QW1相比,PW2灌水量相同、灌水次数较多,产量提高5.0%;与QW2相比,PW3灌水量减少24%、灌水次数增加,产量提高14.3%。与QW1和QW2相比,PW3植株具有较高的穗位叶光合速率和干物质积累量,且增加了粒重和产量。进一步分析微喷灌(PW2)和畦灌(QW2)的耗水特性发现,与QW2相比,PW2叶面积指数、穗位叶蒸腾速率、阶段耗水量、耗水强度、灌水后日蒸散量及对0~100 cm土层水分的消耗均降低,而深层尤其是100 cm以下土壤水分的利用比例增加,进而PW2全生育期总蒸散量降低10.8%,WUE提高10.3%。综...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号