共查询到16条相似文献,搜索用时 86 毫秒
1.
基于RS和GIS的北京冬小麦面积多尺度时空变化研究 总被引:2,自引:0,他引:2
为了解小麦在不同空间尺度上的时空分布特征,基于冬小麦统计和遥感监测数据,利用空间统计分析方法,分别从北京市、区县和乡镇三个尺度,评价了2009-2014年冬小麦面积空间分布变化特征。结果表明:(1)北京市冬小麦面积从2009年的61 971.02 hm下降到2014年的26 814.87 hm,减少了56.73%;冬小麦成片种植的地块数量从11 243块降低到4 914块,减少了56.29%;地块平均面积也从4.76±0.19 hm减少到1.22±0.05 hm,降低了74.29%;(2)通州区、大兴区、房山区和顺义区的冬小麦面积减少量占总减少量的87.43%;每个乡镇的平均冬小麦面积从2009年的1 066.28±153.63 hm降低到2014年的388.21±59.17 hm,且大于1 000 hm和500~1 000 hm的乡镇数分别约减少了2/3和1/2;(3)四个典型乡镇冬小麦面积也均呈极显著减少趋势,地块平均面积降低幅度均在70%以上,并且面积大于5 hm的地块数量占总体的比例减少至不足8%。这说明2009-2014年北京市冬小麦种植面积显著减少,种植区域破碎化趋势严重。 相似文献
2.
基于卫星遥感的冬小麦拔节期长势监测 总被引:12,自引:1,他引:12
为给小麦调优栽培提供信息支持,利用卫星影像信息结合地面试验数据,通过分析小麦拔节期叶面积指数、生物量以及植株氮素含量三个群体质量指标与植被指数之间的关系,建立了基于归一化植被指数(NDVI)、比值植被指数(RVI)的小麦群体质量指标监测模型.结果表明,NDVI与叶面积指数和植株氮素含量呈现显著的正相关关系(R2分别为0.8483和0.8238),与地上部生物量间的相关性未达显著水平(R2=0.7746).RVI与叶面积指数和植株氮素含量呈线性正相关(R2=0.7651和R2=0.78),而与地上部生物量呈显著线性正相关(R2=0.8277).利用不同的试验数据对所建模型进行了检验,监测值与实测值较为吻合,根均方差(RMSE)分别为0.19、106.13 kg·ha-1和0.136%,显示模型具有较好的监测性和通用性.因此,在拔节期可以利用NDVI对叶面积指数和植株氮素含量进行监测,对地上部生物量的监测则以利用RVI数据较好. 相似文献
3.
为进一步探究利用中低分辨率影像监测小麦苗情的机理,丰富小麦长势动态监测的模式,结合2017-2018年定点观测试验,以GF-WFV数据为遥感影像源,研究了孕穗-开花期冬小麦主要长势变化量参数和产量及其与植被指数变化量间的定量关系,以逐步回归方法筛选目标长势变化量参数,分别构建及评价基于GF-WFV影像遥感植被指数变化量的孕穗-开花期叶片含氮量变化量和叶绿素含量变化量监测模型。结果表明,冬小麦叶片含氮量变化量(ΔLNC)和叶绿素含量变化量(ΔCHL)与产量密切相关,而孕穗-开花期的归一化植被指数变化量(ΔNDVI)、比值植被指数变化量(ΔRVI)分别与ΔLNC和ΔCHL相关性最好,因此选择这两个植被指数变化量作为敏感参量构建冬小麦长势监测模型。经验证,基于ΔNDVI和ΔRVI构建的长势线性模型可靠且精度高,其决定系数分别为0.70和0.64,均方根误差分别为0.39%和0.08 mg·L-1FW。基于预测模型和实测数据分级量化表达冬小麦长势的空间分布状况,能够很好实现了基于GF-WFV时相影像长势不同等级的遥感监测。 相似文献
4.
基于SVM的县域冬小麦种植面积遥感提取 总被引:3,自引:0,他引:3
冬小麦种植面积的精确提取,对于农业部门进行冬小麦生长监测与产量估测有着重要的支撑作用。本研究在对Landsat-8卫星15 m×15 m空间分辨率遥感影像进行预处理的基础上,基于最佳波段指数(OIF),采用支持向量机(SVM)算法中四种核函数进行影像分类,并比较分类精度,选择精度最高的核函数作为SVM最优核函数对盐城市大丰区冬小麦种植面积进行提取,与最大似然法、最小距离法的结果进行对比。结果表明,四种核函数中,Linear核函数分类精度最高,达到98.56%。将Linear核函数作为SVM最优核函数对大丰区冬小麦种植面积进行提取,提取到的种植面积为71 834.4 hm~2,提取精度、分类精度和Kappa系数分别为91.25%、98.56%和0.98。基于SVM的冬小麦面积提取效果明显好于传统监督分类方法,说明使用支持向量机与影像光谱特征进行影像分类能够准确提取县域冬小麦种植面积。 相似文献
5.
基于HJ 1B遥感数据的冬小麦旱情监测研究 总被引:3,自引:0,他引:3
为确定植被干旱指数(TVDI)法在苏北地区冬小麦干旱监测中的适用性,利用HJ-1B星CCD、IRS数据,建立地表温度(Ts)-归一化植被指数(NDVI)特征空间,并提取TVDI,对2012年3月26日宿迁市土壤水分信息进行遥感监测,以地面样点实测数据进行验证,评价了地表温度及植被指数信息对TVDI指数变化的敏感性.结果表明,宿迁市较干旱区域主要集中在市、县的城区附近,较湿润区域主要分布在水体周围;TVDI与土壤湿度的相关性随土层深度增加而降低,其中在10 cm、20 cm深度的相关性达到极显著水平;由于Ts直接影响土壤含水量,而NDVI为间接影响,因此TVDI对Ts的敏感性大于NDVI.基于HJ-1B数据的TVDI指数法对冬小麦干旱具有较好的监测效果. 相似文献
6.
7.
为了快速监测小麦叶片水分含量,以敏感波段组和植被指数组2种变量分别作为输入变量,以地面同步观测的冬小麦叶片含水量作为输出变量,分别采用偏最小二乘(partial least squares, PLS)、极限学习机(extreme learning machine, ELM)和粒子群算法(particle swarm optimization, PSO)优化极限学习机,建立冬小麦叶片含水量预测模型,并对其反演效果进行比较。结果表明,光谱反射率和植被指数与叶片含水量之间存在较为密切的相关性,依此确定的敏感光谱波段为红光、蓝光和近红外波段,敏感植被指数为绿度指数、过红指数、归一化绿红差值指数、三角形植被指数和过绿指数。从2种变量的建模效果看,基于植被指数组构建的模型的精度和稳定性均优于敏感波段组,其中基于植被指数组的PSO-ELM模型在6个叶片水分含量反演模型中表现最佳,其r2和RMSE分别为0.98和0.26%。利用最优模型反演得到研究区冬小麦叶片含水量的分布范围为45%~75%,平均为64.57%,反演结果与地面实测较相符,说明基于无人机光谱数据通过建立以植被指数为... 相似文献
8.
基于支持向量机模型的冬小麦全蚀病为害等级遥感监测 总被引:1,自引:0,他引:1
为了解利用高光谱遥感技术对小麦全蚀病进行有效监测的可行性,对感染不同发病等级全蚀病的冬小麦冠层光谱反射率数据进行采集分析,选取监测敏感波段,在Matlab和Libsvm工具箱支持下,利用支持向量机分类方法构建小麦全蚀病病害等级预测模型。结果表明,在不同程度小麦全蚀病的为害下,小麦冠层光谱反射率存在明显变化。通过对数据分析,选择700~900nm波段作为敏感波段进行训练建立模型的结果最好;经检验,基于此波段构建的预测模型预测值与实际值相关系数可达0.943,均方根达0.63,因此生产上可利用波段光谱特征对小麦全蚀病进行监测。 相似文献
9.
10.
县域冬小麦生物量动态变化遥感估测研究 总被引:1,自引:0,他引:1
为给生产管理中及时掌握县域冬小麦长势的动态变化提供有效手段,以江苏省沭阳县为研究区,基于冬小麦生物量形成的生理生态过程,重构冬小麦生物量遥感估测模型。选用两景不同时相的HJ星影像数据,利用植被指数反演的LAI数据,对冬小麦生物量模型进行参数修订,并对县域冬小麦拔节期生物量的空间分布进行估测。在此基础上,进一步估测冬小麦抽穗期生物量分布特征及其动态变化特点。结果表明:(1)冬小麦拔节期生物量估测值和观测值范围分别为2 054.3~4 828.3 和1 962.5~4 568.4 kg·hm-2 ,平均值分别为3 148和3 045.5 kg·hm-2 ,RMSE为214.8 kg·hm-2 ,决定系数为0.919 1,表明冬小麦生物量模型模拟精度较好;(2)冬小麦抽穗期生物量较拔节期发生明显变化,其中长势变化快的田块面积为20 108.7hm,占总种植面积的23.4%。春季气候因素的转好以及肥水措施的实施对冬小麦营养与生殖共生阶段的生长起到明显促进作用。说明本研究提出的基于遥感反演信息与生长模型协同的冬小麦生物量估测方法能有效估测县域冬小麦不同生长时期生物量的空间分布及其动态变化。 相似文献
11.
为了构建小麦黄花叶病的遥感监测技术,在小麦返青期、拔节前期和拔节后期测定了不同黄花叶病等级下的冠层反射率,并同步调查与病害等级相关的小麦株高、含水量、氮含量、色素含量等农学参数,筛选出适宜监测小麦黄花叶病的植被指数,并构建病害等级监测模型。结果表明,小麦黄花叶病的反射光谱敏感波段在返青期和拔节前期集中于560~720 nm范围,而拔节后期则集中于800~900 nm区域。随病害等级的增加,光谱反射率在可见光波段逐渐增加,而在近红外波段区域降低。植被指数与病害等级相关性在不同生育时期间存在显著差异,整体上以拔节前期最好,决定系数(r2)为0.72~0.82,而拔节后期模型精度急剧下降(r2=0.26~0.72)。在植被指数中,整体上以表征色素变化的mND705模型预测精度最好,r2和RMSE分别为0.59~0.68和0.79~0.98。采用偏最小二乘回归(PLSR)建立黄花叶病害分级模型,三个时期的模型精度均高于植被指数模型,且整体上以返青期和拔节期前期估算效果较好,模型验证r2为0.93~0.97,... 相似文献
12.
为利用高时空分辨率的航天数据对区域冬小麦播期实现尽早监测,对冬小麦播期的不同遥感监测时相精度进行了分析。首先利用耦合作物模型和辐射传输模型模拟不同播期冬小麦从播种至返青的冠层光谱反射率,分析不同播期的冠层光谱响应差异,选取对不同播种日期敏感的波段。然后,根据敏感波段的冠层光谱,选择训练样本并计算不同播期之间的J-M距离,初步判断出光谱可分性较好的时相。最后,对不同的播期进一步进行判别分析,判定未知类别样本的所属类别。根据正确分类的精度,在华北平原北部选择播期监测的最佳时相为12月中旬,精度达到89.5%。 相似文献
13.
播期是影响小麦产量与品质的一个重要因素,冬小麦生产管理对播期的及时和准确监测有强烈需求。遥感数据源的日趋丰富及遥感定量化水平的日益提高,为大面积、低成本监测小麦播期提供了可能。本文对冬小麦播期遥感监测的研究进展进行了回顾,系统归纳了当前国内外播期遥感监测方法,分析了目前冬小麦播期遥感监测中存在的问题。推进高时空分辨率遥感数据的使用、强化多尺度传感器遥感数据融合算法的应用、开展冬小麦生长前期不同播期光谱数据的挖掘、探索冬小麦生长前期光谱与上茬作物时序遥感数据的综合及尝试遥感数据与作物模型同化方法的借鉴是冬小麦播期遥感监测的未来发展方向。 相似文献
14.
为探讨基于神经网络对小麦地上部生物量(aboveground biomass, AGB)进行遥感估测的可行性,在江苏省泰州泰兴市、盐城大丰区和宿迁沭阳县布设冬小麦大田试验,在对冬小麦近红外波段反射率(near-infrared band reflectance, REFnir)、红光波段反射率(red band reflectance, REFred)、归一化差值植被指数(normalized difference vegetation index, NDVI)、差值植被指数(difference vegetation index, DVI)、比值植被指数(ratio vegetation index, RVI)、土壤调节植被指数(soil adjusted vegetation index, SAVI)和优化土壤调节植被指数(optimized soil adjusted vegetation index, OSAVI)等7个遥感光谱指标与冬小麦生长指标(LAI和AGB)进行相关性分析基础上,构建基于BP神经网络的冬小麦AGB估测模型,并与... 相似文献
15.
利用有效积温提高冬小麦估产精度的研究 总被引:2,自引:0,他引:2
为探索如何利用冬小麦生长过程中的积温信息来提高遥感估产的准确性,以2009-2010和2012-2013年2个冬小麦生长季的田间试验数据为基础,利用有效积温和植被指数(NDVI)构建冬小麦当季估产指数INSEY(In-season estimate of yield)和INSEY-CGDD(In-season estimate of yield-cumulative growing degree days),分别用NDVI、INSEY和INSEY-CGDD与实测产量建立估产模型,并比较分析3类估产模型的精度。结果表明,3个变量与实测产量均成指数关系,其中INSEY-CGDD模型的精度最高(R2=0.59),预测能力最优,其次是INSEY模型(R2=0.55);而NDVI模型的精度最低(R2=0.35),预测能力最差。因此,在冬小麦估产模型中引入有效积温调整参数,可有效提高遥感估产模型精度。 相似文献
16.
基于高光谱的倒伏冬小麦产量预测模型研究 总被引:1,自引:0,他引:1
为利用高光谱遥感技术对倒伏小麦产量进行准确、快速地估算,选取在乳熟期发生不同程度倒伏的两个春性冬小麦品种为材料,利用光谱仪测定了不同倒伏级别下小麦冠层光谱反射率,研究植被指数与产量及其构成因素间的相关性,最终建立快速、有效估测倒伏小麦产量的数学模型。结果表明,不同级别倒伏对小麦千粒重和产量的影响均达显著水平(P<0.05),随倒伏级别的增加,千粒重和产量均呈降低趋势,二者最高降幅分别为10.72%和17.69%。对倒伏小麦产量与冠层光谱反射率进行相关分析,在350~690 nm波段,相关系数随波长的增加总体呈下降趋势;在690~760 nm波段,相关系数呈上升趋势,在764 nm处,相关系数绝对值达最大,为0.734。千粒重与DVI570,670的相关系数值最高,产量与DVI764,407的相关性最好,且都通过了0.01水平检验。利用植被指数-千粒重-产量构建的反演模型,可提高模型预测精度,与单因子植被指数-产量模型、多因子植被指数-产量模型相比,能更好地反演不同倒伏程度的小麦产量。 相似文献