首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dormancy is one of the important factors controlling pre-harvest sprouting (PHS) resistance in wheat. We identified a major quantitative trait locus (QTL) for seed dormancy on the long arm of wheat chromosome 4A (4AL) via simple sequence repeat (SSR)-based genetic mapping using doubled haploid lines from a cross between Japanese PHS resistant variety ‘Kitamoe’ and the Alpine non-resistant variety “Münstertaler” (K/M). The QTL explained 43.3% of total phenotypic variation for seed dormancy under greenhouse conditions. SSR markers flanking the QTL were assigned to the chromosome long arm fraction length 0.59–0.66 on the basis of chromosome deletion analysis, suggesting that the gene(s) controlling seed dormancy are probably located within this region. Under greenhouse conditions, the QTL explained 28.5 and 39.0% of total phenotypic variation for seed dormancy in Haruyutaka/Leader (HT/L) and OS21-5/Haruyokoi (O/HK) populations, respectively. However, in field conditions, the effect was relatively low or not significant in both the K/M and HT/L populations. These markers were considered to be widely useful in common with various genetic backgrounds for improvement of seed dormancy through the use of marker-assisted selection. Further detailed research using near isogenic lines will be needed to define how this major QTL interacts with environmental conditions in our area.  相似文献   

2.
Pre-harvest sprouting of durum wheat (Triticum turgidum L. var durum) reduces commercial grade, although the actual effects on processing quality are controversial. Little is known about the genetics of the dormancy component of pre-harvest sprouting resistance in durum. We studied the segregation of dormancy in 98 recombinant inbred lines from a cross of a relatively non-dormant line, CI13102, with a moderately dormant line, Kyle. The lines and parents were grown in field tests over three years, 1996, 1997 and 1998. Spikes were collected at approximately 20% moisture and stored at −23 ∘C. Hand-threshed grain of the lines was germinated, and number of seeds germinated was counted each day. A germination resistance index was calculated to characterize dormancy. Dormancy appeared to be complexly inherited in this cross. Lines were observed that were significantly (P < 0.05) more dormant than the parents. The lines transgressive for dormancy expressed in different combinations of the three environments, indicating an environmental interaction. DNA of lines and parents was tested with simple sequence repeat primers and AFLPs that were used in quantitative trait loci (QTL) analysis of dormancy. Significant QTLs for dormancy were found, with the most notable being on chromosome 1A, where other QTLs for pre-harvest sprouting resistance have been reported in common wheat.  相似文献   

3.
Summary Seed dormancy in wheat (Triticum aestivum L. em Thell) is important for minimizing pre-harvest sprouting. To facilitate breeding cultivars that tolerate pre-harvest sprouting conditions, we assessed mode and magnitude of variation of seed dormancy among genotypes and investigated involvement of endogenous water-soluble inhibitor(s) in seed germination. Embryo bio-assays established that water-soluble inhibitor was ubiquitous among the wheat cultivars studied and did not diminish in quantity during after-ripening. Germination response of embryos was decreased by endogenous inhibitor, but the effect markedly declined as embryos aged at room temperature. Variation in dormancy among cultivars was primarily caused by differential response of their embryos to endogenous inhibitor. Gibberellic acid counteracted the initial inhibitory effect of endogenous inhibitor on germination but not the subsequent inhibitory effect on seedling growth. We concluded that pre-harvest sprouting resistance involves multiple factors, particularly embryo receptivity to endogenous inhibitor, and that variation in inhibitor quantity is not solely responsible for genotypic differences in susceptibility to pre-harvest sprouting. The possibility of additional approaches to breeding for pre-harvest sprouting resistance is indicated.Contribution no. 81-389-j, Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A.  相似文献   

4.
Guo  Longbiao  Zhu  Lihuang  Xu  Yunbi  Zeng  Dali  Wu  Ping  Qian  Qian 《Euphytica》2004,140(3):155-162
Effective cumulative temperature (ECT) after heading would be a more reasonable parameter for seed sampling of pre-harvest sprouting/seed dormancy (SD) tests in segregating populations than the days after flowering. SD is an important agronomic trait associated with grain yielding, eating quality and seed quality. To identify genomic regions affecting SD at different grain-filling temperatures, and to further examine the association between SD and ECT during grain-filling, 127 double haploid (DH) lines derived from a cross between ZYQ8 (indica)/JX17 (japonica) by anther culture were analyzed. The quantitative trait loci (QTLs) and their digenic epistasis for SD were identified using a molecular linkage map of this population. A total of four putative QTLs for SD (qSD-3, qSD-5, 6 and 11) were detected on chromosomes 3, 5, 6 and 11, together explaining 41.4% of the phenotypic variation. Nine pairs of digenic epistatic loci were associated with SD on all but chromosome 9, and their contributions to phenotypic variation varied from 2.87%–8.73%. The SD QTL on chromosome 3 was identical to the QTLs found in other mapping populations with different genetic backgrounds, which could be a desirable candidate for gene cloning and marker-assisted selection in rice breeding.  相似文献   

5.
Grain dormancy provides protection against pre-harvest sprouting (PHS) in cereals. Composite interval mapping and association analyses were performed to identify quantitative trait loci (QTL) contributing grain dormancy in a doubled haploid (DH) barley population (ND24260?×?Flagship) consisting of 321 lines genotyped with DArT markers. Harvest-ripe grain collected from three field experiments was germinated over a 7-day period to determine a weighted germination index for each line. DH lines displaying moderate to high levels of grain dormancy were identified; however, both parental lines were non-dormant and displayed rapid germination within the first two?days of testing. Genetic analysis identified two QTL on chromosome 5H that were expressed consistently in each of the three environments. One QTL (donated by Flagship) was located close to the centromeric region of chromosome 5H (qSDFlag), accounting for up to 15% of the phenotypic variation. A second QTL with a larger effect (from ND24260) was detected on chromosome 5HL (qSDND), accounting for up to 35% of the phenotypic variation. qSDFlag and qSDND displayed an epistatic interaction and DH lines that had the highest levels of grain dormancy carried both genes. We demonstrate that qSDND in the ND24260?×?Flagship DH population is positioned proximal and independent to the well-characterised SD2 region that is associated with both high levels of dormancy and inferior malt quality. This indicates that it should be possible to develop cultivars that combine acceptable malting quality and adequate levels of grain dormancy for protection against PHS by utilizing these alternate QTL.  相似文献   

6.
Summary Gibberellic acid, cold (4°C) and a combination of these two treatments were tested for use in breaking dormancy in 27 lines of white-grained wheat with varying levels of resistance to pre-harvest sprouting. Germination increased in all lines treated with gibberellic acid. Dormancy could be broken with 1 M gibberellic acid. Response to cold varied. A combination of gibberellic acid and cold treatment was the most effective. This technique has been found useful in treating seed in a breeding program aimed at producing wheats with resistance to pre-harvest sprouting.  相似文献   

7.
Grain dormancy in wheat is an important component of resistance to preharvest sprouting and hence an important trait for wheat breeders. The significant influence of environment on the dormancy phenotype makes this trait an obvious target for marker-assisted-selection. Closely related breeding lines, SUN325B and QT7475, containing a major dormancy QTL derived from AUS1408 located on chromosome 4A, but substantially different in dormancy phenotype, were compared with a non-dormant cultivar, Hartog, in a range of controlled environments. As temperature increased, dormancy at harvest-ripeness decreased particularly for QT7475. The dormancy phenotypes of reciprocal F1 grains involving all possible combinations of Hartog, QT7475 and SUN325B were also compared in two environments with different temperatures. The results were consistent with the presence of QTL in addition to 4A in SUN325B, compared with QT7475, at least one of which was associated with the seed coat. Genetic analysis of a doubled haploid population derived from SUN325B × QT7475 identified a highly significant QTL located on chromosome 3BL, close to the expected position of the mutant allele of the red seed coat colour gene in white-grained wheat, R-B1a. When the lines in the population were grouped according to the parental alleles at marker loci flanking the 3B QTL, the dormancy phenotype frequency distribution for the SUN325B group was shifted towards greater dormancy compared with the QT7475 group. However, significant variation for dormancy phenotype remained within each group. Lines representing the extremes of the range of phenotypes within each group maintained their relative ranking across seven environments consistent with the presence of another unidentified QTL contributing to dormancy in SUN325B.  相似文献   

8.
Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) can be a significant problem, causing deleterious effects on grain quality. However, the adverse impacts of PHS can be reduced by introgressing genes controlling grain dormancy into white-grained bread wheat. Screening for grain dormancy typically involves germination testing of harvest-ripe grain grown in a glasshouse or field. However, the more uniform environmental conditions provided by temperature controlled glasshouses (i.e. controlled environmental conditions—CEC) may provide significant benefits for the assessment of grain dormancy. In this study, the dormancy phenotype of grain grown under CEC incorporating an extended photoperiod, was compared with 2 years of data from field grown material. Four dormant double haploid lines (derived from SW95-50213 and AUS1408) and two locally adapted non-dormant cultivars EGA Gregory and EGA Wills were compared in three replicated experiments grown under CEC (22 ± 3°C and 24 h photoperiod). The germination response of harvest-ripe grain was examined to assess the expression of grain dormancy. Two measures of germination, the predicted time to 50% germination (G 50) and a weighted germination index, both clearly differentiated dormant and non-dormant lines grown under CEC. In addition, levels of grain dormancy were similar to field-grown plants. These results demonstrated that CEC with an extended photoperiod can be used for rapid and reliable characterisation of grain dormancy in fixed lines of bread wheat.  相似文献   

9.
In spite of the availability of laboratory and field tests there is still a major problem to select pre-harvest sprouting (PHS) tolerant triticale varieties in a reliable, field-independent way. One approach to minimize the influence of environmental conditions and physio-morphological traits on PHS detection is using molecular genetic tools. The ‘viviparous’ Vp1 gene has been repeatedly described to play an important role in dormancy in wheat. A quantitative RT-PCR assay based on the expression of the Vp1 gene has been developed. Specific primers were designed for detecting Vp1 in both wheat and triticale. The expression levels of Vp1 were normalized using reference genes and relatively quantified with the comparative Ct-method. However, the first results indicate that the achieved Vp1 expression levels at 50 days post anthesis are not useful to select for PHS tolerance, both in wheat and triticale. This negative outcome so far is possibly due to the existence of several splicing events or to the late assaying moment in the kernel development, when Vp1 expression is found to be low.  相似文献   

10.
Stagonospora nodorum blotch (SNB) is an important foliar disease of durum wheat (Triticum turgidum var. durum) worldwide. The combined effects of SNB and tan spot, considered as components of the leaf spotting disease complex, result in significant damage to wheat production in the northern Great Plains of North America. The main objective of this study was the genetic analysis of resistance to SNB caused by Phaeosphaeria nodorum in tetraploid wheat, and its association with tan spot caused by Pyrenophora tritici-repentis race 2. The 133 recombinant inbred chromosome lines (RICL) developed from the cross LDN/LDN(Dic-5B) were evaluated for SNB reaction at the seedling stage under greenhouse conditions. Molecular markers were used to map a quantitative trait locus (QTL) on chromosome 5B, explaining 37.6% of the phenotypic variation in SNB reaction. The location of the QTL was 8.8 cM distal to the tsn1 locus coding for resistance to P. tritici-repentis race 2. The presence of genes for resistance to both SNB and tan spot in close proximity in tetraploid wheat and the identification of molecular markers linked to these genes or QTLs will be useful for incorporating resistance to these diseases in wheat breeding programs.  相似文献   

11.
Seed dormancy is one of the most important parameters affecting the malting process and pre-harvest sprouting in barley (Hordeum vulgare L.). Variation of seed dormancy in 4365 cultivated and 177 wild barley (ssp. spontaneum) accessions derived from different regions of the world was investigated in Okayama University, Kurashiki, Japan. Seed dormancy of each accession was estimated from their germination percentages at 0, 5, 10 and 15 weeks post-harvest after-ripening periods. All of the wild barley accessions showed less than 10% germination at 0 week after-ripening period. Level of seed dormancy in 4365 cultivated barley accessions showed a clear geographical differentiation. Seventy seven percent of Ethiopian accessions showed high germination percentages, while 86% of Japanese, Turkish and North African accessions showed low germination percentages at 0 week after-ripening period. A half diallel cross using eleven barley accessions with different level of dormancy revealed that seed dormancy was predominately controlled by additive gene effects. These results suggest that large genetic diversity for seed dormancy in barley is explained as different levels of additive accumulation of genetic factors. Barley varieties showing appropriate dormancy could be developed by crossing among barley germplasm accessions used in the present study.  相似文献   

12.
Root traits are key components of plant adaptation to drought environment. By using a 120 recombined inbred lines (RILs) rice population derived from a cross between IRAT109, a japonica upland rice cultivar and Yuefu, a japonica lowland rice cultivar, a complete genetic linkage map with 201 molecular markers covering 1,833.8 cM was constructed and quantitative trait loci (QTLs) associated with basal root thickness (BRT) were identified. A major QTL, conferring thicker BRT, located on chromosome 4, designated brt4, explained phenotypic variance of 20.6%, was selected as target QTL to study the effects of marker-assisted selection (MAS) using two early segregating populations derived from crosses between IRAT109 and two lowland rice cultivars. The results showed that the flanking markers of brt4 were genetically stable in populations with different genetic backgrounds. In the two populations under upland conditions, the difference between the means of BRT of plants carrying positive and negative favorable alleles at brt4 flanking markers loci was significant. Phenotypic effects of BRT QTL brt4 were 5.05–8.16%. When selected plants for two generations were planted at Beijing and Hainan locations under upland conditions, MAS effects for BRT QTL brt4 were 4.56–18.56% and 15.46–26.52% respectively. The means of BRT for the homozygous plants were greater than that of heterozygous plants. This major QTL might be useful for rice drought tolerance breeding. L. Liu and P. Mu are contributed equally to this work.  相似文献   

13.
Preharvest sprouting reduces grain quality and lowers grade. Characterization of preharvest sprouting resistance is important in selection in breeding for transgressive segregation and understanding the genetics of the trait for identifying QTL. Methods of measuring dormancy and other factors contributing to preharvest sprouting resistance are varied. The objective of this study was to demonstrate the requirement of multiple methods of measurement over multiple durations of germination to maximize understanding of transgressive segregation and QTL for preharvest sprouting resistance within a segregating durum wheat population grown in multiple environments. Ninety-eight durum wheat (Triticum turgidum L. var. durum) recombinant inbred lines (RIL) from a cross of a minimally dormant line, Sentry, by a moderately dormant line, Kyle, and controls were grown in replicated field tests in 1996, 1997 and 1998 and in a growth chamber trial in 1998. Preharvest sprouting was measured from intact spikes as sprouting index or from hand threshed grain as germination index (GI), germination resistance (GR), and percent germination (PG). The threshed grain measures were evaluated using counts at 7, 14 and 21 days intervals from the start of germination. Correlations performed on the measure type and duration using lines within the RIL population showed some discontinuity across environments, type of measure and duration of measure, with counts at extended intervals for PG producing the lowest correlations. The number of transgressive segregant lines varied with environment, duration and type of measure. Different QTL were identified by different types of measures and duration of counts. GI calculated for 7, 14 and 21 days germination count intervals and GR calculated for 21 days identified a highly significant QTL on chromosome1A (QPhsd.spa.-1A.1). GR calculated for 7 days identified a highly significant QTL on 2A (QPhsd.spa.-2A.1) in two different environments, and GI calculated for 21 days and PG at 7 days identified the same highly significant QTL on chromosome 7B (QPhsd.spa.-7B.1). The results indicated that multiple measures and durations of measure intervals must be applied to results collected across different environments to maximize the identification of QTL and transgressive segregants of the population segregating for preharvest sprouting resistance.  相似文献   

14.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

15.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

16.
Summary The effect of the 1AL/1RS chromosome translocation on grain yield and other agronomic characteristics of 85 random F2-derived F6 bulks from three 1AL 1RS × 1A bread wheat crosses was determined under optimum and reduced irrigation conditions at CIANO, Yaqui Valley, Sonora, Mexico, during the 1991–1992 and 1992–1993 crop production cycles. Harvest plots of 5.0 m2 were arranged in an alpha lattice design with three replications. The 1AL/1RS translocation increased grain yield, above-ground biomass, spikes/m2, and test weight under both irrigated and dryland conditions. Homozygous chromosome 1A lines, on the other hand, possessed longer spikes with more grains. The 1AL/1RS cultivars had an advantage in 1000-grain weight, which was detected only under optimum irrigation. The translocation lines showed later maturity and longer grainfilling period than the 1A genotypes under one irrigation treatment. A significant relationship between grain yield and test weight was detected only among the 1AL/1RS genotypes, indicating that they possess heavier and plumper grains than the 1A genotypes. These results encourage the continued use of the 1AL/1RS translocation in wheat improvement.  相似文献   

17.
Stagonospora nodorum blotch (SNB) is an important foliar and glume disease in cereals. Inheritance of SNB resistance in wheat appears quantitative. The development of partially resistant cultivars seems to be the only effective way to combat the pathogen. Partial resistance components like length of incubation period (INC), disease severity (DIS) and length of latent period (LAT) were evaluated on a population of doubled-haploids derived from a cross between the partially resistant cultivar Alba and the susceptible cultivar Begra. Experiments were conducted in controlled environments and the fifth leaf was examined. Molecular analyses were based on bulked segregant analyses (BSA) and screening with 240 microsatellites DNA markers. The QTL analysis revealed QTL on chromosome 6AL (designated as QSnl.ihar-6A) and putative QTL on chromosome 6D. The QSnl.ihar-6A accounted for 36% of the phenotypic variance for DIS and 14% for INC. The putative QTL accounted for 10% of the variability in INC and 8% of DIS components of SNB resistance.  相似文献   

18.
Summary Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7–11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

19.
The association between high malting quality and pre-harvest sprouting (PHS) susceptibility is a key challenge when developing new malting barley varieties. A new malting barley variety Baudin has successfully combined high malting quality and PHS tolerance. A doubled haploid population was developed for mapping PHS tolerance and seed dormancy from a cross of Baudin?×?AC Metcalfe using 233 molecular markers. Three QTLs were mapped for seed dormancy based on the standard germination test at 24, 48 and 72?h. One major QTL was mapped to the long arm of chromosome 5H controlling seed dormancy and PHS tolerance from Baudin. Two other minor QTLs were identified from Baudin on chromosomes 3 and 7H. QTL/QTL interaction was detected for seed dormancy between chromosomes 3 and 5H. The PHS tolerance allele of the 5H QTL from Baudin contributes to higher malt yield without significant impact on diastatic power, beta-glucan content and wort viscosity. QTL from Baudin provide new sources to integrate PHS tolerance and high malting quality.  相似文献   

20.
The effect of two different nitrogen treatments on five traits associated with yield and nutrient composition of stover were evaluated using a set of 213 F2:3 families derived from two elite inbred lines Huang-C and Xu178. Evaluation of the phenotypes expressed under the two nitrogen conditions showed that low nitrogen conditions could increase acid detergent fiber (ADF) and neutral detergent fiber (NDF), and decreased crude protein content (CP), crude fat content (CF), and stover yield (SY), thereby negatively affecting the digestibility and quality of silage maize. Twenty-eight quantitative trait loci (QTL) were identified affecting the five measured traits under two nitrogen conditions, including four for ADF, five for NDF, five for CP, four for CF, and three for SY. Several QTL associated with ADF or NDF were detected under same nitrogen conditions, and were localized to the same chromosomal regions, especially the QTL qADF6 and qNDF6, qADF10 and qNDF10, were only detected under low nitrogen condition. These results suggested that ADF and NDF perhaps were controlled by several common genes, and that the nutritional content of stover may be influenced by additional genetic mechanisms when grown under conditions of low nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号