首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of organic waste on agricultural land as a soil conditioner and fertilizing material has lately gained much attention. This study was conducted to determine the effects of vermicompost applications (0·5%, 1%, 2% and 4% w/w) on physical characteristics of soils with different textures (sandy loam, loam and clay), under laboratory conditions. The results indicated that in the higher soil aggregate fraction (>12·7 mm) aggregate fraction was limited at the three soils. Vermicompost applications in all three soils significantly increased organic matter content. When compared with control, the increasing rates in organic matter content were 14·0%, 23·8%, 42·0% and 90·2% for 0·5%, 1%, 2% and 4% vermicompost application doses, respectively. Vermicompost applications increased the wet aggregate stability and decreased the dispersion ratio of all the experimental soils in all aggregate size fractions. Overall, wet aggregate stability increased from 26·9% to 52·2% with the application rate of 4%. Correlation coefficient between organic matter content and wet aggregate stability was found as 0·918**. The lowest mean bulk density and the highest mean total porosity occurred when the most vermicompost was added. In all the soils studied, the highest permeability coefficients were gained with the application dose of 2%. As a result of increase in wet aggregate stability and decrease in bulk density, air permeability increased, and penetration resistance decreased significantly. The results obtained in this study have clearly indicated that the vermicompost application is an effective way to improve soil physical characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Background, aim, and scope  Earthworms make a major contribution to decomposition in ecosystems where they are present, mainly acting in the drilosphere, that is, galleries, burrows, casts, and middens. Earthworm middens are hot-spots of microbial activity and nutrient dynamics and represent a suitable model for studying earthworm-mediated influences on soil microbial communities by alteration of the patch structure of the microbial environment. We studied the structure and activity of the microbial communities in the soil system formed by middens of Lumbricus terrestris and the soil below and surrounding them and the role of earthworms in maintaining these structures through time. Material and methods  We set up an experiment in which middens were either left (control) or removed from their original place (translocated) and left in a nearby area free of earthworm activity for 2 months. After 1 and 2 months we sampled middens, soil below them, and surrounding soil. We analyzed the phospholipid fatty acid (PLFA) profiles and measured respiratory fluxes of CO2 and CH4. Results  Microbial communities of middens clearly differed from those of soil below and surrounding soil samples, showing higher bacterial and fungal PLFAs (p < 0.0001 and p < 0.01, respectively); furthermore, changes in microbial communities were stronger in control middens than in translocated middens. Moreover, gram positive and negative bacterial PLFAs were greater in translocated than control middens (p < 0.0001 and p < 0.001, respectively), as well as total organic carbon (p < 0.001). Microbial activity was higher in middens than in soil below and surrounding soil samples both for CO2 (p < 0.0001) and CH4 (p < 0.0001). Discussion  Soil bioturbation by the earthworm L. terrestris was strong in their middens, but there was not any effect on soil below and surrounding soil. Microbial communities of middens maintain their biomass and activity when earthworms were not present, whereas they decreased their biomass and increased their activity when earthworms were present. Conclusions  Earthworms strongly enhanced microbial activity measured as CO2 production in middens, which indicates that there are hot spots for soil microbial dynamics and increasing habitat heterogeneity for soil microorganisms. Moreover, our data strongly support the fact that the impact of this earthworm species in this soil is restricted to their middens and increasing soil heterogeneity. Recommendations and perspectives  Our data indicate that it is not clear if earthworms enhance or depress microbial communities of middens since the microbial activity increased, but did not modify their biomass and this was not dependent on soil organic C content. These results indicate no competence for C pools between this anecic earthworm and microorganisms, which has been found for other earthworm species, mainly endogeics. Conversely, they suggest some type of facilitation due to the release of additional nutrient pools in middens when earthworms are present, through the digestion of middens' material or the addition of casts produced from other food sources.  相似文献   

3.
The present study demonstrates the usefulness of natural microbial growth-promoting compounds for improving the stability and life of vermicompost-based (both granular and its aqueous extract) bioformulations. Granular vermicompost maintained the number of cells of Rhizobium meliloti Rmd 201 up to 5.9 × 108 after 180 days at 28°C compared with 2.1 × 108 in charcoal (powdered), while aqueous extract of the vermicompost supported the 5.6 × 107 rhizobia numbers even after 270 days. The addition of 25 μL/mL cow urine and 0.01 mM calliterpinone, a natural plant growth promoter, increased the rhizobia number significantly in granular vermicompost and its aqueous extract, respectively.  相似文献   

4.
This study investigated the effects of vermicompost tea (aqueous extract) on yield and chemical quality of pak choi (Brassica rapa cv Bonsai, Chinensis group) grown in three media (two soils and a peat-perlite medium) under two fertilizer regimes (compost and synthetic fertilizer). The impacts of tea application on the chemical and biological properties of the growth media were also investigated. Vermicompost teas were prepared using various extraction methods (non-aerated, aerated, aerated with additives) with 1:10 (v:v) chicken manure-based vermicompost to water dilution and applied weekly at the rate of 200 mL plant?1 for 4 weeks. Application of vermicompost tea increased plant production, total carotenoids and total glucosinolates in plant tissue. This effect was most prominent under compost fertilization. Total phenolic was lower in vermicompost tea treated plants compared to those treated with only mineral nutrient solution and the water control. Vermicompost tea improved mineral nutrient status of plants and media, and enhanced the biological activity of the media. Variability in yield and chemical quality of plants across treatments was explained largely by variability in tissue N uptake and dry matter accumulation. Dehydrogenase activity and soil respiration of vermicompost tea-treated growth media were approximately 50% higher than untreated media. This study confirmed that vermicompost tea can positively influence plant yield and quality and increase soil biological activity in multiple soil types.  相似文献   

5.
【目的】蚯蚓粪是蚯蚓消化有机废弃物产生的均匀颗粒,能够提升土壤肥力,改良土壤结构并促进作物生长。本文初探了蚯蚓粪与土壤的不同配比对基质微生物性状及韭菜生长和品质的影响,为蚯蚓粪的开发利用提供依据。 【方法】2015年4—6月在中国农业大学温室内进行盆栽试验,按蚯蚓粪、土壤质量比 (w/w) 设置4个处理,依次为:0/100% (纯土壤不添加蚯蚓粪,CK);20%/80% (T1);60%/40% (T2);100%/0 (T3)。韭菜收获后,测定了基质养分含量、微生物群落变化、韭菜生物量、可溶性蛋白总量、可溶性糖总量和叶绿素含量。 【结果】1) 随着蚯蚓粪添加比例的增加,基质中的全氮、速效钾和有机质的含量均显著提高;2)蚯蚓粪能显著促进韭菜根系生长,并改善韭菜品质。与对照相比,T1、T2和T3处理中韭菜新根比分别提高5.75%、6.39% 和22.23%;韭菜可溶性蛋白总量提升了1.84~5.97倍,可溶性糖总量提升了1.49~1.60倍 (P < 0.05);3)蚯蚓粪能显著提高基质中的细菌和真菌多样性,并显著增加细菌116、118、130、226、297片段 (P < 0.05),但减少了真菌71、91、153、351片段 (P < 0.05)。 【结论】蚯蚓粪改善了基质的微生物群落结构,提高细菌和真菌的多样性,增加养分有效性,进而促进韭菜生长并改善韭菜品质。蚯蚓粪直接用作基质的效果最好,但从经济角度考虑,蚯蚓粪与土壤按质量百分比20%/80%即可基本达到满意的效果。  相似文献   

6.
ABSTRACT

The housefly larvae (Musca domestica) vermireactor is capable of highly efficient waste reduction for swine manure management; however, effectiveness of larvae-vermicompost land utilization and the associated impact on soil environment are poorly understood. This study, which integrated incubation pot experiments and field plot tests on a chrysanthemum (Chrysanthemum morifolium) farm, was designed to investigate soil biochemical and microbial functions in response to inorganic fertilizer (NPK), vermicompost (VC) application, and/or combination of inorganic fertilizer and vermicompost (I + V). Pot experiments indicated that available soil nitrogen (N), phosphorus (P), and potassium (K) were significantly higher (21%-43%, 206%-306%, and 35%-36%, respectively) with VC treatment compared to NPK treatment; meanwhile, soil organic carbon (C), N and P mineralization was increased by 46%-57%, 53%-70%, and 30%-113%, respectively. Vermicompost application increased soil highly labile organic C by 19% to 42%. Vermicompost also enhanced soil enzymatic activities: 37%-68% for dehydrogenase, 22%-107% for urease, and 3.4%-56% for phosphatases, but activities of soil β-1,4-glucosidase and β-1,4-N-acetylglucosaminidase were reduced by 17%-53% and 24%-42%, respectively. Compared to pot experiment, continuous land application of vermicompost overwhelmingly caused soil nutrient accumulation, increased soil C stock and microbial biomass, enhanced soil mineralization, and improved C-, N-, and P-related enzymatic activities. Co-inertia analysis indicated that soil fertility indices positively correlated with most microbiological indices. This work reveals VC as a new biofertilizer for crop production and highlights its merit on soil health improvement.  相似文献   

7.
Rice seedling wilt frequently occurs in upland nurseries under well-aerated conditions and causes considerable economic loss. Whether the wilt is pathogenic or edaphic is not known. We hypothesize the use of composts to alleviate seedling wilt. The severity level of upland rice seedling wilt was significantly (p < 0.05) positively correlated with soil pH (r = 0.499; n = 19), but negatively correlated with soil organic matter (r = −0.745), microbial biomass C (r = −0.669), activities of dehydrogenase (r = −0.589), arylsulfatase (r = −0.272), fluorescein diacetate hydrolysis (r = −0.466), and β-glucosidase (r = −0.280). Correlations between severity level and soil inorganic N and exchangeable potassium K were not significant. Contents of Fe, Zn, Cu, and Mn in healthy seedlings were not significantly (p < 0.05) different from those in infected seedlings. These data suggest that seedling wilts are not associated with nutrient constraints. Compost amendment at the rate of 3% or above in pot experiments significantly improved seedling growth and reduced the wilt symptoms. Field trials further showed that aboveground weight of seedlings in compost-amended treatment ranged from 11.5 to 14.9 mg per plant, significantly higher than the range from 6.38 to 12.1 mg per plant in the control treatment; in addition to rice growth compost significantly increased microbial biomass and enzyme activities of soils. Soil fumigation significantly increased rice growth and alleviation symptoms in 11 out of 19 soils, suggesting the involvement of pathogens. It is concluded that upland seedling wilt is a pathogen-associated disease. Probably high soil pH and low soil biochemical activities may favor pathogen activities.  相似文献   

8.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

9.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

10.
Effects of municipal biosolids on microbial N2-fixation in agricultural soil were assessed in a 3-month laboratory study which included analysis of metals, pharmaceuticals, and personal care products. Reference agricultural soil was amended with organic manure or municipal biosolids from a southern Ontario wastewater plant, with a biosolids-only treatment included to evaluate metabolic activity in this inoculum. Microbial N2-fixation in reference and manure-amended soils were similar (p = 0.144) over 3 months and lower than in biosolids-amended soil (p = 0.001); however, differences among soil treatments decreased over time, with no significant difference at test termination. In general, one-time application of biosolids caused short-term stimulation of N2-fixing activity with a return to reference conditions within 3 months. Although no residual effects were detected, biosolids introduced elevated levels of metals, pharmaceuticals, personal care products (particularly analgesics), and viable bacteria; long-term effects caused by repeat applications (as commonly practiced) requires further investigation.  相似文献   

11.
Projected changes in climate for the northeastern USA over the next 100 years include a reduction in the depth and duration of the winter snowpack, which could affect soil temperatures and frost regimes. We conducted a snow-removal experiment in a northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire over 2 years to induce soil freezing and evaluate its effect on the abundance, richness, and diversity of soil arthropods during the growing season. Snow removal at the beginning of winter increased the depth and duration of soil frost, decreased soil temperatures, and led to a reduced abundance of some arthropod taxa, including Araneae (reduced by 57%; P = 0.0001), Pseudoscorpionida (75%; P < 0.0001), Hymenoptera (57%; P = 0.0033), Collembola (24%; P = 0.0019), adult Coleoptera (23%; P = 0.0057), and larval Diptera (33%; P < 0.0001) and an increase in other taxa, including Hemiptera (increased by 7%; P = 0.032). Taxa that did not respond significantly to snow removal included Chilopoda (P = 0.55), Acari (P = 0.66), Diplopoda (P = 0.66), adult Diptera (P = 0.54), and larval Coleoptera (P = 0.39). A delayed snowpack over two winters also resulted in decreased arthropod richness by 30% (P < 0.0001) and Simpson’s index of diversity by 22% (P = 0.0002) during the two subsequent growing seasons. Results of this study demonstrate that predicted changes in the winter snowpack and depth and duration of soil frost may reduce the abundance and alter the community composition of arthropods living in the forest floor of northern hardwood forests, which could have implications for the structure and function of northern forest ecosystems.  相似文献   

12.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   

13.
Pot experiments were carried out over two growing periods to assay the biocontrol efficacy and rhizosphere colonization of Trichoderma harzianum SQR-T037 (SQR-T037) applied as SQR-T037 conidia suspension (TCS), SQR-T037 conidia suspension blended with organic fertilizer (TBF), or SQR-T037 fermented organic fertilizer (TFF). Each formulation had three T. harzianum numbers. In two experiments, Percent Disease Indexes (PDIs) decreased with the increase of SQR-T037 number added to soils. The TFF treatment consistently exhibited the lowest PDIs at same amendment rate of SQR-T037 and 0–8.9%, 25.6–78.9%, and 4.4–50.0% of PDIs were found in TFF, TCS, and TBF treatment, respectively. Soils treated with TFF showed the highest SQR-T037 population in rhizosphere and bulk soil. Decrease of Fusarium oxysporum population in both bulk and rhizosphere soils occurred in the treatment SQR-T037 at 105 and 106 cfug−1 soil rate. The TFF treatment at the SQR-T037 rate of 103 cfug−1 soil significantly (p < 0.05) increased SQR-T037 population within the rhizoplane but had no effect on F. oxysporum population when compared to TCS and TBF. Generally, TFF treatments were superior to TCS and TBF treatments on disease control by sustaining colonization of SQR-T037 and decreasing F. oxysporum abundance in the rhizosphere soil. We propose that TFF treatment at SQR-T037 rate of 107 cfug−1 (i.e., 105 cfug−1 soil after applied to soil) was the best formulation for controlling Fusarium wilt of cucumber.  相似文献   

14.
The present investigation was aimed to analyze influence of earthworm culture on nutritive status, microbial population, and enzymatic activities of composts prepared by utilizing different plant wastes. Vermicomposts were prepared from different types of leaves litter of horticulture and forest plant species by modified vermicomposting process at a farm unit. Initial thermophilic decomposition of waste load using cow‐dung slurry was done in the separate beds. The culture of Eisenia fetida was used for vermicomposting in specially designed vermibeds at the farm unit. The physico‐chemical characteristics, enzyme activities (oxido‐reductases and hydrolases), and microbial population (bacteria, fungi, free‐living nitrogen‐fixing bacteria, actinomycetes, Bacillus, Pseudomonas, phosphate‐solubilizing bacteria and fungi) of vermicomposts were found significantly higher (p < 0.05) than those of control (without earthworm inoculum). The study quantified significant contributions of earthworm culture to physico‐chemical, enzymatic, and microbiological properties of vermicompost and confirmed superior fertilization potential of vermicompost for organic farming. The agronomic utility of vermicompost was assessed on yellow mustard plant in a pot experiment. Pot soil was amended with different ratios (5%, 10%, 20%) of vermicompost and normal compost (without earthworm inoculum). Effects of these amendments on the growth of Brassica comprestis L. were studied. The significant differences (p < 0.05) in the growth of plant were observed among vermicompost‐, compost‐amended soil, and control. Vermicompost increased the root and shoot lengths, numbers of branches and leaves per plant, fresh and dry weights per plant, numbers of pods and flowers, and biochemical properties of plant leaf significantly, especially in 20% amendment. These results proved better fertilization potential of vermicompost over non‐earthworm‐inoculated compost.  相似文献   

15.
A 15N dilution experiment was carried out to investigate effects of cultivation on the gross N transformation rate in coastal wetland zone. Microbial community composition was estimated by phospholipid fatty acid (PLFA) analysis and abundance of soil ammonia-oxidizing bacteria (AOB) was quantified by real-time polymerase chain reaction (PCR). Soil salinity decreased significantly, while total N increased after coastal wetland was cultivated. Microbial biomass (total PLFA), bacterial biomass, fungal biomass, and actinomycete biomass of the native coastal wetland soils were significantly (p < 0.05) lower than those of the cultivated soils whereas AOB population size also significantly increased after coastal wetland cultivation. Multiple regression analysis showed that total PLFA biomass and soil total N (TN) explained 97% of the variation of gross N mineralization rate in the studied soils (gross mineralization rate = 0.179 total PLFA biomass + 5.828TN − 2.505, n = 16, p < 0.01). Gross nitrification rate increased by increasing the soil AOB population size and gross mineralization rate (M) (gross nitrification rate = 3.39AOB + 0.18 M − 0.075, R 2 = 0.98, n = 16, p < 0.01). Management of salt discharge and mineral N fertilization during the cultivation of wetland soils might have changed composition of soil microflora and AOB population size, thus influencing mineralization and nitrification. Probably, the cultivation of coastal wetland soils increased the risk of N losses from soil through nitrate leaching and gas emission (e.g., N2O and NO).  相似文献   

16.
Organic amendments not only promote soil quality and plant performance directly but also facilitate the establishment of introduced microbial agents. A field experiment with a fully factorial design was conducted using three levels of vermicompost (without vermicompost, low dose of 15 Mg ha−1 and high dose of 30 Mg ha−1), with and without plant growth-promoting rhizobacteria (PGPR) to investigate their effects in a tomato – by spinach rotation system. Our results demonstrated that applying PGPR alone had no effect on soil properties and crop performance. Vermicompost enhanced the beneficial effects of PGPR on both soil and crop, with the extent of promotion depending on the dose of vermicompost and crop types. In the presence of vermicompost, PGPR significantly (P < 0.05) reduced soil carbon and nitrogen but increased soil microbial biomass carbon and nitrogen. PGPR also significantly increased the yield of tomato and spinach under the low dose of vermicompost, but only significantly increased tomato yield under the high dose of vermicompost. There were strongly synergistic effects between vermicompost and PGPR on crop quality, with crop nitrate concentration being significantly decreased, while the vitamin C in tomato and soluble protein in spinach was significantly increased. Our results revealed the high potential of integrating vermicompost and microbial agents to substitute for regular chemical fertilization practices.  相似文献   

17.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

18.
Vermicompost and worm-bed leachate (WBL) are two products obtained from vermicomposting. The objective of this study was to evaluate the effect of different combinations of vermicompost and WBL on cultivating radish (Raphanus sativus L.). A multilevel factorial design with 25 treatments was used to investigate the effect of vermicompost at 0, 10, 20, 30, or 40% and WBL at 0, 10, 20, 30, or 40% on germination and growth parameters. A maximum seed germination of 54%, number of leaves (2.8), and plant height (8.6 cm) were obtained with 10% vermicompost and 10% WBL. A maximum shoot (7.0 g) and root (7.3 g) dry weight was obtained with 10% vermicompost and 15% WBL. Vermicompost and worm-bed leachate have an inhibitory effect at higher concentrations on seed germination and plant growth. These inhibitory effects might be due to increased salt concentrations, pH or auxin-like effects of humic and fulvic acids.  相似文献   

19.
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface (0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK) increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%, 25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly (P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and thus, it may be considered as a sustainable system in the North China Plain.  相似文献   

20.
Benefits from the application of plant growth-promoting bacteria in agriculture largely depend on the complex interactions between several factors including the nature of fertilizers selected. This study was designed to determine the fine tuning between the inoculated bacteria and different fertilizers and their effect on the growth of lettuce plants (Lactuca sativa L.). Plant growth promotion by a novel species of the genus Azospirillum, namely A. rugosum IMMIB AFH-6, was tested by biochemical, bioassay, and greenhouse studies. The treatments used in the greenhouse study were; unfertilized control (Blank), half recommended dose of chemical fertilizer (1/2CF), full recommended dose of chemical fertilizer (1CF), pig manure fertilizer (PMF), pig manure fertilizer + half recommended dose of chemical fertilizer (PMF + 1/2CF), and pig manure fertilizer + full recommended dose of chemical fertilizer (PMF + 1CF). All these treatments when inoculated with A. rugosum IMMIB AFH-6 inoculation were, respectively, In-Blank, In-1/2CF, In-1CF, In-PMF, In-PMF + 1/2CF, and In-PMF + 1CF. Significant increase in plant biomass and shoot N, P, Ca, and Fe was shown in the In-Blank treatment. Plant growth in soil amended with PMF and A. rugosum IMMIB AFH-6 was significantly lower than in soil treated with the chemical fertilizer, but inoculation combined with chemical fertilizer significantly elevated the plant biomass. The In-PMF + 1/2CF treatment showed the highest yield. A. rugosum IMMIB AFH-6 facilitated the accumulation of trace minerals in higher concentrations when PMF was combined with 1CF. To examine the benefits of inoculation by A. rugosum IMMIB AFH-6, we have proposed a new type of data analysis which considers both biomass and nutrient content of plants. This new type of analysis has shown the importance of the mineral content of plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号