首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brian J. Steffenson 《Euphytica》1992,63(1-2):153-167
Summary Since the mid-1940's, barley cultivars grown in the northern Great Plains of the USA and Canada have been resistant to stem rust caused byPuccinia graminis f. sp.tritici. This durable resistance is largely conferred by a single gene,Rpg1, derived from a single plant selection of the cultivar Wisconsin 37 and an unimproved Swiss cultivar. At the seedling stage, barley genotypes withRpg1 generally exhibit low mesothetic reactions at 16–20° C and slightly higher mesothetic reactions at 24–28° C to many stem rust pathotypes. This resistance is manifested by a low level of rust infection and mostly incompatible type uredia on adult plants.Rpg1 reacts in a pathotype-specific manner since some genotypes ofP. g. f. sp.tritici are virulent on cultivars carrying this gene in the field. Several factors may have contributed to the longevity of stem rust resistance in barley, a) since barley is planted early and matures early, it can sometimes escape damage from stem rust inoculum carried from the south; b) one or more minor genes may augment the level of resistance already provided byRpg1; c) the cultivation of resistant wheat cultivars and eradication of barberry have reduced the effective population size and number of potential new pathotypes ofP. g. f. sp.tritici, respectively; and d) virulent pathotypes ofP. g. f. sp.tritici andP. g. f. sp.secalis have not become established. This situation changed in 1989 when a virulent pathotype (Pgt-QCC) ofP. g. f. sp.tritici became widely distributed over the Great Plains. However,Rpg1 may still confer some degree of resistance to pathotype QCC because stem rust severities have been low to moderate and yield losses light on barley cultivars carrying the gene during the last four seasons (1989–1992). Several sources of incomplete resistance to pathotype QCC have been identified in barley. To facilitate the transfer of resistance genes from these sources into advanced breeding lines, molecular marker assisted selection is being employed.  相似文献   

2.
Barley powdery mildew caused by Blumeria graminis f. sp. hordei can be effectively controlled using genetic resistance. Moreover, specific resistances are also important for characterizing cultivars and verifying their origin, purity and authenticity. Winter barley is distinguished by several specific resistances, which are usually absent in spring barley. Besides responses caused by known genes, many cultivars showed a response suggesting the presence of an unknown resistance. Therefore, the aim of this research was firstly, to test winter barley cultivars, suspected to carry an unknown resistance gene, using a large collection of pathogen isolates for their expression of this specific response and to characterise the corresponding resistance. A set of 16 winter barley accessions originating from four gene banks was studied where each accession was represented by five single plant progenies. For resistance tests, 56 isolates of the pathogen were used. A new resistance with a proposed designation of Lu was found in all 16 selected accessions. Apart from Lu, eight well‐known Ml genes (a6, a8, a12, g, h, Lo, ra and Ru2) were postulated. Two accessions of cv. 'Borwina' originating from different gene banks were found to differ in their set of resistance genes.  相似文献   

3.
Stem rust of wheat (caused by Puccinia graminis f.sp. tritici) gained high international attention in the last two decades, but does not occur regularly in Germany. Motivated by a regional epidemic in 2013, we analysed 15 spring and 82 winter wheat cultivars registered in Germany for their resistance to stem rust at the seedling stage and tested 79 of these winter wheat cultivars at the adult‐plant stage. A total of five seedling stem rust resistance genes were postulated: Sr38 occurred most frequently (n = 29), followed by Sr31 (n = 11) and Sr24 (n = 8). Sr7a and Sr8a occurred only in two spring wheat genotypes each. Four cultivars had effective seedling resistance to all races evaluated that could only be explained by postulating additional resistance genes (‘Hyland’, ‘Pilgrim PZO’, ‘Tybalt’) or unidentified gene(s) (‘Memory’). The three winter wheat cultivars (‘Hyland’ ‘Memory’ and ‘Pilgrim PZO’) were also highly resistant at the adult‐plant stage; ‘Tybalt’ was not tested. Resistance genes Sr24 and Sr31 highly protected winter wheat cultivars from stem rust at the adult‐plant stage in the field. Disease responses of cultivars carrying Sr38 varied. Mean field stem rust severity of cultivars without postulated seedling resistance genes ranged from 2.71% to 41.51%, nine of which were significantly less diseased than the most susceptible cultivar. This suggests adult‐plant resistance to stem rust may be present in German wheat cultivars.  相似文献   

4.
Barley (Hordeum vulgare) is cultivated on 49.1 million hectares worldwide with 50.2% of the area located in Europe. Powdery mildew, caused by Blumeria graminis f. sp. hordei (Bgh), occurs wherever barley is grown. Cultivar resistance plays an important role in global barley production, especially in parts of Europe where high concentrations of both spring and winter types are grown. The aim of this report was to postulate specific resistance genes in barleys from nine European countries registered in the Czech Republic from 2011 to 2015. Thirty‐five spring cultivars and 27 winter barleys were tested with 56 diverse Bgh isolates. Twenty‐five known resistance genes were postulated, and unknown genes were detected in Sandra, Saturn and Zeppelin. Unidentified specific resistance genes were also present in winter hybrids Hobbit and Wootan. Spring cultivars Arthur and Francin consisted of three and two genotypes, respectively. Resistance gene mlo was present in 26 spring cultivars, and the proportion of cultivars with this gene increased from 62.9% in 2006–2010 to 75.7% in 2011–2015. The gene Mlp1 was identified for the first time in German winter cultivar Saturn. Five spring cultivars registered in Slovakia were included in the tests. All the cultivars that were tested contained one or more specific resistance genes to powdery mildew. Adaptability of the pathogen and possibilities for breeding winter barleys are discussed.  相似文献   

5.
M. J. Y. Shtaya    J. C. Sillero    K. Flath    R. Pickering    D. Rubiales 《Plant Breeding》2007,126(3):259-267
A set of 23 recombinant lines (RLs) of barley ( Hordeum vulgare L.) derived from H. vulgare  ×  H. bulbosum L. crosses was inoculated with barley leaf rust ( Puccinia hordei ) and powdery mildew ( Blumeria graminis f.sp. hordei ) at the seedling stage to identify their levels and mechanisms of resistance. Eight RLs were studied further in glasshouse and field tests. All three barley parents ('Emir', 'Golden Promise' and 'Vada') were highly susceptible to powdery mildew and leaf rust isolates. Several RLs showed partial resistance expressed as high relative latency periods and low relative infection frequencies against leaf rust. This high level of partial resistance was due to a very high level of early aborting colonies without host cell necrosis. Several RLs showed hypersensitive resistance to some or all isolates. For powdery mildew, one RL was completely resistant to the CC1 isolate and had a hypersensitive resistance to the CO-02 isolate. Three RLs derived from 'Emir' were completely resistant to both powdery mildew isolates, and three more RLs tested in the field had higher levels of partial resistance than their parents. The results indicate that H. bulbosum contains major and minor gene(s) for resistance to leaf rust and powdery mildew that can be transferred to cultivated barley.  相似文献   

6.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   

7.
A partial genetic linkage map was constructed on 71 doubled-haploid lines derived from a cross between the barley lines Tadmor and WI2291 with 181 molecular markers. The segregating population was used to detect markers linked to the gene Mlg conferring resistance to powdery mildew (Erysiphe graminis f. sp. hordei) and to genes for quantitative resistance to scald (Rhynchosporium secalis). The gene Mlg on chromosome 4H was flanked by two AFLP markers at a distance of 2.0 and 2.4 cM, respectively. QTLs for resistance to scald were detected on chromosomes 2H and 3H. This association of molecular markers with qualitative and quantitative disease resistance loci represents a valuable starting-point for marker-assisted selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Twenty-one bread-wheat entries were selected after careful screening for complete or near-complete resistance to yellow rust (Puccinia striiformis), stem rust (P. graminis), and leaf rust (P. recondita). In 1987, the 21 entries were intercrossed in a near-half diallel scheme. The resulting 190 F2 populations were advanced to F7 under selection for complete resistance to the three rusts and for good agronomic types. In 1992 the 21 parents and 140 selected F7 lines were assessed for their resistance to the three rusts. Of the 21 parents, 12 showed a breakdown of yellow rust resistance, five a breakdown of stem rust resistance and two a breakdown of leaf rust resistance. In addition, several of the 140 selected F7 lines, all still resistant in F6, had become susceptible to one or more of the rusts. It appears that a progression towards more complex races, especially of yellow rust, is inevitable for the wheat-cereal rust patho-systems when the selection is for complete or near-complete resistance.  相似文献   

9.
M. Heun 《Plant Breeding》1987,99(3):234-238
The estimation of combining abilities and heterosis for quantitative resistance against Erysiphe graminis f. sp. hordei of eight spring barley (Hordeum vulgare) cultivars is presented. Fur this purpose a half diallel cross and its parents were arranged in five Latin rectangles, each inoculated with a current mildew isolate. Significant general combining ability was found whereas specific combining ability was non-significant. A great pan of the general combining ability could be explained by variety effects. Significant variety heterosis was obtained too. Significant average heterosis was obtained but us effect was small. Among those selected for this study, ‘Grit’ and ‘Hora’ were the best parents for further crosses.  相似文献   

10.
Leaf‐rust resistance (Rph) genes in 61 Czech and Slovak barley cultivars and 32 breeding lines from registration trials of the Czech Republic were postulated based on their reaction to 12 isolates of Puccinia hordei with different combinations of virulence genes. Five known Rph genes (Rph2, Rph3, Rph4, Rph7, and Rph12) and one unknown Rph gene were postulated to be present in this germplasm. To corroborate this result, the pedigree of the barley accessions was analysed. Gene Rph2, as well as Rph4, originated from old European cultivars. The donor of Rph3, which has been mainly used by Czech and Slovak breeders, is ‘Ribari’ (‘Baladi 16’). Rph12 originates from barley cultivars developed in the former East Germany. Rph7 in the registered cultivar ‘Heris’ originates from ‘Forrajera’. A combination of two genes was found in 10 cultivars. Nine heterogeneous cultivars were identified; they were composed of one component with an identified Rph gene and a second component without any resistance gene. No gene for leaf rust resistance was found in 17 of the accessions tested. This study demonstrates the utility of using selected pathotypes of P. hordei for postulating Rph genes in barley.  相似文献   

11.
A. Graner    S. Streng    A. Drescher    Y. Jin    I. Borovkova  B. J. Steffenson 《Plant Breeding》2000,119(5):389-392
Leaf rust of barley, caused by Puccinia hordei Otth, is an important foliar disease in most temperate regions of the world. Sixteen major leaf rust resistance (Rph) genes have been described from barley, but only a few have been mapped. The leaf rust resistance gene Rph7 was first described from the cultivar ‘Cebada Capa’ and has proven effective in Europe. Previously mapped restriction fragment length polymorphism (RFLP) markers have been used to determine the precise location of this gene in the barley genome. From the genetic analysis of a ‘Bow‐man’/‘Cebada Capa’ cross, Rph7 was mapped to the end of chromosome 3HS, 1.3 recombination units distal to the RFLP marker cMWG691. A codominant cleaved amplified polymorphic site (CAPS) marker was developed by exploiting allele‐specific sequence information of the cMWG691 site and adjacent fragments of genomic DNA. Based on the large amount of polymorphism present in this region, the CAPS marker may be useful for the marker‐assisted selection of Rph7 in most diverse genetic backgrounds.  相似文献   

12.
R. E. Niks 《Euphytica》1987,36(3):725-731
Summary Early stages of the infection process of Puccinia hordei isolate 1.2.1 and of a P. recondita f.sp. tritici isolate were studied on adult plants of four barley lines and one wheat line. Two of the barley lines are extremely susceptible to P. hordei, the other two have a very high level of partial resistance.A histological study based on a trypan blue staining indicated that stoma penetration by P. hordei isolate 1.2.1 was equally successful on the susceptible as on the partially resistant adult barley plants. Abortion of substomatal vesicles was rare in all lines. These results do not support a hypothesis that mechanisms of partial resistance in adult plants differ from those in seedlings by a substantial abortive stoma penetration.Also in the nonhost combinations wheat-P. hordei and barley-P. recondita f.sp. tritici inhibition of stoma penetration and of substomatal vesicle development appears to play a biologically insignificant role in adult plants.The proportion of stoma penetration on the leaf sheaths of two of the barley lines was as high as on the leaf blades of the flag leaf and the leaf below the flag leaf. There was no evidence for stomatal exclusion as a crucial factor in the relatively low infectibility of leaf sheaths to leaf-blade specialized rust species.  相似文献   

13.
R. N. Sawhney 《Euphytica》1987,36(1):49-54
Summary Variation for resistance toPuccinia graminis f.sp.tritici, P. recondita f.sp.tritici andP. striiformis was induced in theTriticum aestivum cultivar Lalbahadur using nitrosomethyl urea. Variations were isolated from the M2 population in the post-seedling stage in the field when infected with a mixture of races of each of the three rusts. Plants exhibiting simultaneous resistance to stem rust, leaf rust and yellow rust were indentified. Repeated screening in the subsequent generations confirmed the resistance of the mutant lines that are morphologically similar to the parental cultivar. The rust resistance of 20 mutant lines was also confirmed at the seedling stage using individual races of stem rust and leaf rust. The different patterns observed in the mutant lines tested against a wide range of races show that these lines can be used as components of a multiline. The patterns of variation compared with those of the known genes for resistance against the Indian races of the pathogens suggest that the mutations for rust resistance are due to factor different from those already known in bread wheat, providing a broadened genetic base for future breeding programmes.  相似文献   

14.
A. Dreiseitl 《Plant Breeding》2007,126(3):268-273
Powdery mildew is the most common disease of barley in the Czech Republic and winter barley plays a crucial role in the winter survival and reproduction of the pathogen. This study was aimed at identifying resistance genes in winter barley cultivars grown in the Czech Republic from 1971 to 2005 by using the method of postulation. Forty-one cultivars and a parental line were tested at the seedling stage for their reaction to 32 selected isolates of Blumeria graminis f. sp. hordei . In total, 26 resistance spectra were detected and the following 18 resistance genes were found: Mla6 , Mla7 , Mla8 , Mla13 , Mla14 , MlaMu2 , MlaNo3 , MlaRu4 , Mlg , Mlh , MlLa , Mlra , Ml ( Bw ), Ml ( Ch ), Ml ( Dr2 ), Ml ( Dt5 ), Ml ( IM9 ) and Ml ( St ). Two cultivars ('Kiruna' and 'Sorna') exhibited heterogeneity for mildew resistance. Another source of Mla13 and a possible centre of origin of Ml ( Bw ) are discussed.  相似文献   

15.
An outline is given of results for the transfer of new resistances against leaf rust and barley mosaic viruses from Hordeum bulbosum into winter barley. Progenies from backcrosses of barley cultivars with H. bulbosum hybrids were tested both in conventional breeding trials and in additional tests under controlled conditions. Resistance to both pathogens proved to be stable and of good heritability, with differences occurring which depended on the combinations used. Lines with resistance to all leaf rust and mosaic viruses tested, or to either one, were selected. Both resistances segregated independently.  相似文献   

16.
Genetic studies were conducted on nine triticale cultivars and lines lo determine the presence and identity of stem rust resistance genes. The lines were intercrossed and their F2 and F3 generations were tested with selected pathotypes of Puccinia graminis tritici. Segregation in seedling tesis showed the presence of two new genes SrLal and SrLa2 in ‘Lasko’, SrBj anil SrJ in ‘Bejon’. SrVen in ‘Currency’, SrBj in ‘Abacus’ and ‘RM4’ and SrNin in ‘Tahara’, ‘Maidan’ and ‘Madonna’ SrBj, SrNin, SrLal and SrLa2 were genetically independent and each conferred resistance to the currently important Australian P. graminis tritici pt 34-2.12.13, whereas SrJ and SrVen conferred moderately susceptible reactions to the same pathotype. SrVen segregated independently of SrBj, but the relationship of SrVen with the other genes was noi determined. The typical low infection types conferred by SrBj and SrJ were best expressed at temperatures above 21 C, Prolamine separations nsinj; sodium dodecyl sulphate-polyacrylamide gel elcclrophoresis confirmed that SiNin and SrBj were located in chromosome 2R. The gene SrLal behaved as a third allele at or near the Sr27, SrSatu locus in chromosome 3R, The present work demonstrated that chromosomes 2R and 3R are important bearers of genes Tor stem rust resistance in hexaploid iriticale.  相似文献   

17.
A population of 103 recombinant inbred lines (RILs, F9-derived lines) developed from the two-row spring barley cross L94 × ‘Vada’ was evaluated under field conditions for resistance against powdery mildew (Blumeria graminis f.sp. hordei) and scald (Rhynchosporium secalis). Apart from the major resistance gene mlo on chromosome 4 (4H), three QTLs (Rbgq1, Rbgq2 and Rbgq3) for resistance against powdery mildew were detected on chromosomes 2 (2H), 3 (3H), and 7 (5H), respectively. Rbgq1 and Rbgq2 have not been reported before, and did not map to a chromosome region where a major gene for powdery mildew had been reported. Four QTLs (Rrsq1, Rrsq2, Rrsq3 and Rrsq4) for resistance against scald were detected on chromosomes 3 (3H), 4 (4H) and 6 (6H). All four mapped to places where QTLs for scald resistance had been reported before in different populations.  相似文献   

18.
A new gene, Yr24, for resistance to stripe rust was transferred from a durum accession to common wheat via an amphiploid (synthetic wheat) with Aegilops tauschii. Yr24 was located in chromosome 1B by monosomic analysis. Its genetic linkage of 4 cM with Yr15 indicated its localization to the short arm.  相似文献   

19.
The spatio-temporal distribution of race-specific resistances to powdery mildew was analysed in northern France (the east, the north and the west of Paris). Resistances were identified in 26 winter and six spring barley cultivars. Seedling leaf segments were inoculated with 20 powdery mildew isolates, chosen to identify 14 resistance alleles. As opposed to other European countries, the resistance alleles differed between winter and spring cultivars grown in the three regions. Most of the winter cultivars had no resistance allele, or only the widespread resistance alleles Mlra and/or Mlh, plus Mlg in the west. Mla9 and Mla13 were also present in the north, but at a low frequency. Spring cultivars carried the alleles Mla7, Mla9, Mla12, Mlk, Mlg or MlLa in the east, where a diversification of resistances has occurred since 1987, particularly because of the use of ‘Volga’ (Mla7, Mlk, Mlg and MlLa). In the north and the west, Mla12 dominated after a decrease in the frequency of Mla7, Mla13 has recently been introduced in the north and the west with the cultivar ‘Vodka’.  相似文献   

20.
Variation for adult plant resistance in near-isogenic wheat lines carrying Lrl4b, Lrl4ab and Lr30 in a ‘Thatcher’ background indicated the possible presence of novel adult plant resistance genes effective against the Indian leaf rust population. Sixty-one wheats released for cultivation in India were grown in isolated nurseries. Each nursery was separately inoculated with one of four leaf rust pathotypes which had been selected to aid identification of resistance effective only in the adult plant stage. Seven distinct response groups were recognised and a minimum of six sources of adult plant resistance were postulated. In a group of 14 wheats, resistance was explained on the basis of the seedling response genes that were identified. Similar results for two years with pathotype 77-1 gave support to the reliability of field tests. Adult plant resistance (APR) sources were either race-specific or effective against all pathotypes used. Seedlings of cultivars with APR showed susceptible reactions. The possible presence of Lr34 in Indian wheats and its role in durable leaf rust resistance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号