首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arid and semi-arid lands are becoming increasingly important for food and fiber production worldwide. Windbreak and shelterbelts can improve the productivity of such lands, but their establishment can be difficult and/or expensive. This study examined the survival and growth of Arizona cypress (Cupressus arizonica) propagated in four different container sizes, then outplanted at three planting sites in either fall 1994 or spring 1995. Trees were planted in plots prepared with three treatments (v-ditch and weed barrier, singly and in combination), along with an undisturbed control. Generally, more intensive site preparation and larger stock size was associated with greater survival. While some such stock size and treatment combinations showed high mortality at 28 days, subsequent mortality through six growing seasons was relatively low. Stock size and site preparation did not strongly impact height after six growing seasons.  相似文献   

2.
Growth and nutrient dynamics of bare-root white spruce (Picea glauca (Moench) Voss) seedlings were monitored for three years in a nursery and for one season after planting to assess effects of three nursery fertilization regimes. Nitrogen (totaling 0, 650, and 1300 kg N ha(-1) for 3 years) was applied conventionally in equal amounts during the growing season. The high-N treatment, representing a nutrient loading regime, was also applied seasonally at exponentially increasing rates as a fourth treatment. By the end of the 3-year nursery rotation, the N treatments had stimulated growth by 104-180% and nutrient uptake by as much as 381, 224 and 145% for N, P and K, respectively, inducing large accumulations of N and P in both conventionally and exponentially loaded seedlings. Compared with exponentially loaded seedlings, the concentrations of nutrients were less in conventionally loaded seedlings although their biomass was larger (31%). High nutrient reserves in the seedlings at the end of the nursery rotation resulted in increased biomass production (40-190%) after planting, which was related to the ability of the seedlings to retranslocate internal reserves for new growth, despite little or no net uptake of nutrients during the first season after planting. Compared with conventionally loaded seedlings, retranslocation was greater in exponentially loaded seedlings, which had accumulated larger and more readily available nutrient reserves during the nursery phase. The shortness of this study limits its usefulness for predicting the persistence of the loading response after planting, but we postulate that the high nutrient status of loaded seedlings at the end of the nursery rotation will contribute to future growth through increased nutrient storage and retranslocation, thus prolonging the loading response.  相似文献   

3.
Three different stock sizes of containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings were planted in an abandoned agricultural field. The small planting stock was of a conventional type produced in 110 cm3 containers. The experimental medium and large stock types were produced in 340 and 700 cm3 containers, respectively. Gas exchange, xylem water potential and dry masses were measured six times during each of the first two growing seasons in field plots with and without vegetation control. During the first growing season, the effect of planting shock masked most physiological and growth differences among seedling types. During the second growing season, in plots with vegetation control, small and medium seedlings had similar values of physiological variables and of growth as measured by relative growth rates (RGR), but the large seedlings showed lower values of both net photosynthesis and of RGR, a difference attributed to low initial quality of the root system in the larger seedlings. In plots without vegetation control, the trend was identical, but differences were not significant; the greater height of the larger seedlings, and the resulting greater access to light, compensated for their lower initial quality. The similarity in response between the medium and the small seedlings shows that a fourfold increase in shoot size (1.68–6.82 g) in the initial size and a doubling of the shoot : root ratio (2.17–4.54) of the planting stock did not result in increased planting shock or reduced growth in these containerized conifer stock types. The results also show the importance of the interaction between stock height and the vertical light profile created by the competing vegetation in the final assessment of stock performance.  相似文献   

4.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   

5.
Second-year Norway spruce seedlings [Picea abies (L.) Karst.] grown in containers were divided into three fertilization levels in August [5, 15 and 25 mg nitrogen (N) seedling?1]. The resulting foliar concentrations of N were 11.0, 13.1 and 15.8 g kg?1, respectively. Seedling height (mean 26.0 cm) did not differ among treatments. The next spring, the seedlings were tested in two experiments. (1) The seedlings were transplanted into pots containing sandy soil in the greenhouse, where they were fertilized with either pure water or nutrient solution (22 mg N l?1). (2) The outplanting performance of the autumn-fertilized seedlings was tested on a sandy field. In the greenhouse experiment, the autumn fertilization level affected height growth and root egress of the seedlings significantly, but less than fertilization with a nutrient solution after planting. In the field experiment, during the first season after transplanting shoot growth of the seedlings increased with the level of autumn fertilization. After the second and third seasons, the seedling stem volume was highest with the highest level of autumn fertilization. These results suggest that, by improving the preplanting nutrient status of seedlings, the growth of shoot, stem diameter and root biomass can be enhanced after planting, especially on nutrient-poor soils. However, heavier autumn fertilization than that used here may yield a greater and more persistent increment in growth.  相似文献   

6.
South  David B.  Rakestraw  James L.  Lowerts  George A. 《New Forests》2001,22(1-2):97-110
A seedling size/intensive management study with Pinustaeda L. was established in 1993 on two sites in the CoastalPlain of Georgia and South Carolina. Each site contained a 2 × 2split-plot study involving two seedling sizes and two levels ofestablishment intensity. Ideotype ``B' seedlings averaged 5.0 mmin diameter (at the root collar) and were 43 cm tall. Ideotype``A' seedlings averaged 8.5 mm in diameter and were 50 cm tall. ``Standard' establishment practices included herbicides(hexazinone and sulfometuron) and fertilizer (DAP) appliedduring the first year. The ``intensive' management involved twoherbicide applications during the first year and two during thesecond year, fertilizer during the first and third years, andinsecticide applications during the first two years (for controlof tip moth, Rhyacionia frustrana Comstock).Intensive management did not affect survival but planting largerseedlings increased survival slightly on one site. However,treatments affected early growth at both sites. On both sites,fourth-year plot-volumes were increased with greaterestablishment intensity and larger seedlings but there was nointeraction between stock size and establishment intensity. Early growth gains were greatest when both intensive managementand larger seedlings were combined. Depending on site, thiscombination resulted in 21% to 51% more volume (at age 4) thanthe next best treatment (standard seedlings with intensivemanagement).  相似文献   

7.
After more than 50 years of research and selective breeding, blight-resistant American chestnut (Castanea dentata) trees will soon be available for planting into the species’ pre-blight range. Increased understanding of the regeneration requirements of pure American chestnut (C. dentata [Marsh.] Borkh.) will increase the success of future efforts to establish blight-resistant chestnut. We quantified survival and initial growth of bare-root American chestnut seedlings at five locations in eastern Kentucky, USA. We used a split-plot design to compare seedlings planted within adjacent mesic and xeric sites treated with either a two-age shelterwood overstory treatment or a midstory removal treatment. The silvicultural treatments and topographic settings allowed us to evaluate chestnut seedling performance under four light and site productivity combinations. Seedling survival was 57% and seedling height averaged 94 cm following two growing seasons. Seedling survival was negatively related to sand and coarse fragment content, but was unrelated to silviculture treatment or topographic position. Chestnut seedlings grew best in shelterwood overstory treatments areas on mesic sites. Seedlings growing in shelterwood overstory treatment areas added 3- and 3.5-times more height and stem increment compared to seedlings planted after midstory removal. Seedling leaf mass and foliar nitrogen (N) content were also greatest in shelterwood plantings on mesic sites. The high-light environment created by shelterwood overstory removal resulted in better initial seedling growth, but the moderate-light of the midstory removal treatment may ultimately provide chestnut seedlings a greater advantage over competing vegetation.  相似文献   

8.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings of a single seed source were grown in a bare-root nursery for two years to produce five different stock types by varying spacing and transplanting treatments. They were then planted in the forest together with one-year-old container seedlings of the same seed source, which constituted a sixth treatment. Stem volume mean relative growth rate (R(v)) was low immediately after planting for all stock types except the container seedlings, and increased over the following 7.6 years. An 8-week greenhouse test of the six stock types showed that dry weight mean relative growth rate (R(w)) generally decreased with seedling dry weight, but this effect was less obvious after planting, because only the three smaller stock types showed a decrease in R(w) with size. In another experiment, bare-root Douglas-fir seedlings were grown at five different spacings in a nursery for two years, and seedlings from each spacing treatment were sorted into large or small by height. The resulting 10 treatments were planted in the forest and stem volumes determined over 6.7 years. The linear effect of nursery spacing on stem volume was no longer evident 3.6 years after planting, but large seedlings had greater stem volume than the small seedlings throughout the 6.7 years of the study. There was no indication that R(v) declined with time, but small seedlings had higher R(v) than large seedlings. Relative growth rates of two-year-old Douglas-fir were depressed for a year or two after planting, but then remained relatively constant, or increased during the ensuing 5 years. Relative growth rates of smaller seedlings were greater than those of larger seedlings so that relative biomass differences decreased with time, and the time advantage (the time necessary for small seedlings to reach the present biomass of large stock) of larger stock decreased. Absolute size differences increased with time.  相似文献   

9.
Quality of seedlings is important for the success of plantations. The field performance of five stock types of Olga Bay larch (Larix olgensis Henry) seedlings three seasons after planting was evaluated. High survival rates were achieved for all five types of planting stock in the first-year growing season when weeds were controlled. In the second and third-year growing seasons, significant differences were observed in survival rates among different stocktypes. The 1 + 1 type of Olga Bay larch seedling demonstrated better survival than 1 + 0 type of seedlings. 1 + 1 seedlings with diameter larger than 5.0 mm as well as 1 + 0 seedlings with diameter larger than 4.5 mm were suitable for reforestation. The 1 + 1 stocktype with a root collar diameter between 6.0 and 7.5 mm was considered optimal for the establishment of fast-growing and high-yield plantations. The number of lateral roots > 1 cm in length was the best predictor of field performance, however, the number of first order lateral roots with diameter > 1 mm at the tap root junction (FOLR (D > 1 mm)) was more feasible and sufficiently reliable to predict the field performance of the deciduous conifers. The initial height and root collar diameter of seedlings showed a significant correlation with the field performance for both 1 + 1 and 1 + 0 seedlings in the first and second-year growing seasons and thus can be adopted as an indicator for predicting potential field performance of seedlings.  相似文献   

10.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

11.
East Texas contains the western extent of the natural range of loblolly pine (Pinus taeda L.) and, therefore, many planted seedlings there experience water deficit sometimes leading to plantation failure. One solution may be to regenerate with clonally propagated drought-hardy planting stock. The objective of this research was to compare the field performance of loblolly pine seedlings and plantlets of diverse genetic origin, produced via micropropagation technology.Two adjacent sites were established (Site I in 1993 and Site II in 1994) with trees produced from four genetic families: Liberty (LIB) and Montgomery (MON) Counties from southeast Texas, and Fayette (FAY) and Bastrop (BAS) Counties from the “Lost Pines” in Central Texas. Height, groundline diameter (GLD), leaf area, survival, root/shoot ratio, and root system architecture were measured throughout the 1994 and 1995 growing seasons. In addition, height and diameter at breast height on Site II were measured at the end of 1999 and 2000 growing seasons.Height and GLD growth for seedlings was significantly greater than for plantlets on both sites. However, mean relative growth rates for height were greater for plantlets during the first growing season, but comparable thereafter. Survival for all treatments was >85% on Site I and >90% on Site II at the end of the 1995 growing season. Survival was significantly different, but by a negligible margin, between families and stock types on Site II at the end of the 1995 growing season, and by a margin of 7% (89% for seedlings vs. 82% for plantlets) at the end of the 2000 growing season. Seedlings had greater leaf area growth than plantlets after two growing seasons. Root/shoot ratio was significantly greater for plantlets after two growing seasons, whereas their specific root length was significantly smaller than that of seedlings. This was attributed to root system architecture. Whereas plantlets produced thicker roots with less length per unit dry weight, seedlings produced more branching with thinner roots for similar dry weights.  相似文献   

12.
Root characteristics and field performance of container and bare-root seedlings of red oak (Quercus rubra L.) were compared during the first growing season after planting. Sixty seedlings of each stock type were planted on a clearfell and weed-free site near Restoule, Ontario. Twenty-four additional seedlings from each stock type were compared at the start of the study in terms of shoot and root parameters. Measurement of root and shoot parameters were repeated at three dates during the first growing season in the field. The root systems of container stock had a larger number of first order lateral long roots and were significantly more fibrous than bare-root stock. These differences were sustained throughout the first growing season. In terms of field performance, container seedlings had 100% survival and achieved significant increases in both biomass and shoot extension. Bare-root seedlings suffered 25% mortality, significant shoot dieback and more variable growth. The mean relative growth rate (RGR) of container seedlings increased throughout the study period to a maximum of 30 mg/g/day, whereas the mean RGR of bare-root stock remained close to or below zero. Overall, the container seedlings proved less prone to transplanting shock than the bare-root seedlings, most likely due to favourable root architecture and the pattern of root development. Further work may be warranted in container design, growing regimes and root architecture to fully realise the potential of container systems for the production of high quality red oak seedlings across a range of site conditions.  相似文献   

13.
We investigated effects of nutrient addition on several physiological characteristics of 60-cm-tall black spruce (Picea mariana Mill. B.S.P.) layers (i.e., rooted branches of overstory trees) and 20-cm-tall planted seedlings on a clear-cut, N-limited boreal site. After two growing seasons, current-year and one-year-old needles of fertilized trees (layers and seedlings combined) had higher net photosynthetic rates (A(n)) and maximum capacity of Rubisco for CO(2) fixation (V(max)) than unfertilized trees. One-year-old needles of fertilized trees had higher stomatal conductance (g(s)), higher water-use efficiency, and lower intercellular to ambient CO(2) ratio than unfertilized trees. Additionally, fertilized trees had higher predawn and midday shoot water potentials than unfertilized trees. Stomatal conductance of 1-year-old needles was 23% higher in seedlings than in layers, but there were no significant differences in g(s) of current-year needles between the regeneration types. For both needle age-classes, A(n) and V(max) of layers were 25 and 40% higher, respectively, than the corresponding values for seedlings. The higher values of A(n), V(max) and foliar N concentration of layers compared with seedlings after two growing seasons may be associated with the larger root systems of the layers compared with the transplanted seedlings.  相似文献   

14.
Water relation patterns and subsequent growth were studied on bare-root and container jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) B.S.P.) seedlings during the first growing season on boreal cut-over sites.Containerized seedlings of both species had greater needle conductance compared to bare-root seedlings over a range of absolute humidity deficits. Needle conductance of containerized seedlings in both species remained high during periods of high absolute humidity deficits and increasing plant moisture stress. Bare-root seedlings of both species had a greater early season resistance to water-flow through the soil-plant-atmosphere continuum (SPAC) than container seedlings. Resistance to water flow through the SPAC decreased in bare-noot seedlings of both species as the growing season progressed, and was comparable to container seedlings 9 through 14 weeks after planting. Four weeks after field planting jack pine container seedlings had greater new root development compared to bare-root seedlings, while at the end of the summer both stock types had similar new root development. Black spruce bare-root seedlings had greater new root development compared with container seedlings throughout the growing season.  相似文献   

15.
Impacts of nursery short-day treatments on the survival, growth and needle damage of about 5,000 1 + 0 container white spruce (Picea glauca [Moench] Voss) seedlings from a single seedlot were studied for two growing seasons following planting on July 22, 1999 at four boreal reforestation sites in Northern Alberta, Canada of varying soil texture, drainage, aspect, slope, and slope position. Each site was separated into two areas that were site-prepared by either ripping or mounding. When seedlings reached a height of about 20 cm under normal greenhouse growth conditions, the seedlings from different germination dates over a 7-week period were exposed to one of five different conditioning treatments (T), mainly through varying the duration of 12-h short-day exposure to 0 (T0), 3 (T3), 7 (T7), 10 (T10), or 15 (T15) days followed by different periods of reduced N supply. N-reduction produced few differences in needle nutrient concentrations and so was not considered a likely cause of differences in field performance. The treatments progressively (from T0 to T15) increased tolerance to drought and frost, and resulted in a similar seedling size for T3, T7 and T10 (planting height of 21 cm and ground diameter of 2.9 mm) although T0 seedlings were smaller (20 cm) and T15 taller (24 cm). The weather in 1999 was dry, particularly in the weeks immediately before and after planting, but relatively moist and favorable in 2000 and 2001 apart from one major frost event (−7°C) in May 2000. Survival, growth and needle damage varied substantially among sites and short-day treatments, and the treatment differences were largely consistent across the four sites. In general the growth was better on the ripped than on the mounded areas. Seedlings in T7 (intermediate tolerance) survived and grew best in the first year but T0 (actively growing) did best during the second year. After 2 years, no differences were observed among T0, T3 and T7 in mortality (18%) and total height growth (15 cm). However, T10 and T15 had higher mortality (24 and 43%), and lower height growth (12 and 10 cm, respectively). The percentage of seedlings showing very severe needle damage after 2 years increased from T0 through T15 (14–33%). New root egress in the field also differed significantly among treatments and was positively and highly correlated with survival rate and growth. These results suggest that a longer short-day regime, as in T10 or T15, may be counterproductive and a shorter regime may be more effective in improving the performance of summer-planted white spruce seedlings.  相似文献   

16.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

17.
Timmer  V.R. 《New Forests》1997,13(1-3):279-299
Reforestation efforts in Ontario have become increasingly more reliant on containerized planting stock since these seedlings are less costly to produce and plant than bare-root stock. Container seedlings, however, tend to be more susceptible to competing vegetation when planted on weed-prone sites often requiring release by chemical herbicides. We have developed cultural techniques to improve the competitiveness of containerized seedlings by promoting initial outplanting performance thus reducing the need for early vegetation control. The approach is based on two new preconditioning practices, exponential fertilization and nutrient loading, which induce a steady-state build up of nutrient reserves in seedlings for outplanting. Exponential nutrient loading integrates these practices with high dose fertilization inducing luxury consumption. Steady-state culture corresponds better with the competitive outplanting environment, since stable internal nutrient accumulation in the greenhouse phase conforms with steady-state nutrient uptake of natural exponentially growing vegetation in the field, and exponential nutrient delivery to container-restricted root systems also better simulates nutrient flux reached by expanding roots in a field soil with constant nutrient availability. Combined with nutrient loading, the higher nutrient reserves and improved nutrient balance in seedlings contribute to enhanced stress resistance and increased growth performance. This paper reviews the theory and practice of exponential nutrient loading during seedling culture, presents results of growth and nutritional responses of seedlings planted on competitive sites, and suggests appropriate criteria for quality testing of nutrient loaded stock.  相似文献   

18.
Seedling growth is often hampered on sites dominated by Kalmia angustifolia. In June 2000, a trial was established on a clear-cut site in Quebec, Canada, with a high cover of Kalmia and Vaccinium species. The objectives were to evaluate how soil scarification and fertilization at the time of planting influence early growth and establishment of black spruce [Picea mariana (Mill.) BSP] and jack pine (Pinus banksiana Lamb.) seedlings. During the first 2 years, scarification reduced Kalmia cover three-fold and doubled the distance from seedlings to the nearest Kalmia stem. Scarification did not increase soil-extractable NH4-N concentration, and reduced soil potassium, calcium and magnesium. Scarification had no effect on seedling water stress. Seedling growth improved and foliar nutrient concentrations were generally higher in scarified plots than in unscarified control plots. No differences were observed between single- and double-pass scarification for any variables except for ground-level stem diameter of seedlings, which was greater with double-pass scarification (12.1 vs 13.1 mm). Spot fertilization increased seedling growth and foliar nitrogen concentrations. Jack pine growth was greater than black spruce growth, an effect enhanced when seedlings were fertilized.  相似文献   

19.
Recent trends in nursery practice in New Zealand   总被引:5,自引:0,他引:5  
Menzies  M.I.  Holden  D.G.  Klomp  B.K. 《New Forests》2001,22(1-2):3-17
The plantation resource in New Zealand is now 1.73 million hectares, of which 90% is Pinus radiataD. Don (radiata pine). The resource has been expanding at over 50,000 ha per year since 1992, although new planting is currently declining. In 1998, new planting and restocking of previously clear-felled areas was 81,100 ha. Initial stocking rates vary, but are typically in the range of 800–1000 plants per hectare, requiring around 80 million nursery plants to be raised per year.Sufficient open-pollinated seed is produced for New Zealand requirements. An increasing proportion of more expensive control-pollinated seed is being used to increase genetic gain. This has led to increased use of vegetative propagation by cuttings and tissue culture, providing more than 25% of current planting stock. These propagules, especially cuttings, often have better early performance compared with seedlings, perhaps because of their larger size. Clonal forestry options are also now being evaluated.Seedling quality specifications have been well defined for bare-root radiata pine, but not well quantified for more recent plant types such as vegetative propagules or container-grown plants. Both root system quality and physiological age can be important for vegetative propagules. These propagules, especially cuttings with a physiological age of less than 4 years, have performed as well as seedlings for growth, and have been better than seedlings for stem form and early stability. Container-growing of planting stock is being introduced with this more valuable genetic material, and issues of plant quality are being raised, as it is expensive to grow large stock in containers. More research should be done to determine what plant quality standards are required to ensure successful establishment with these stock types.  相似文献   

20.
Growth of loblolly pine (Pinus taeda L.) seedlings through three growing seasons after planting increased with intensity of herbaceous weed control using herbicides. Weed control had no effect on pine survival. Two years of complete herbaceous weed control (CHC, control throughout the first two growing seasons after planting) and operational herbaceous weed control (OHC, sulfometuron at 0.42 kg ai/ha at the beginning of the first growing season), resulted in lower biomass of weeds plus trees than with no herbaceous weed control (NHC) during the first growing season. Differences in total biomass during the first year were due to differences in biomass of herbaceous weeds. Total biomass on CHC and OHC plots was at least as great as NHC the second year, and greater by the third year, as pines assumed dominance as a result of increased growth from reduction of herbaceous weeds. The operational herbicide treatment had no significant impact on overall herbaceous weed biomass and cover, and little effect on species composition compared to no herbaceous weed control two and three growing seasons after treatment. The CHC treatment significantly reduced herbaceous weed biomass, cover and composition through three growing seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号