首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

2.
Kernel texture (”hardness”) is one of the major determinants of wheat quality and is primarily controlled by the Puroindoline (Pin) genes, located at the Hardness (Ha) locus. The absence of the Ha locus is responsible for the extremely hard kernels of durum wheat (T. turgidum subsp. durum). Recently, the Pin genes from a soft common wheat variety were introgressed into durum wheat through homoeologous recombination. The objective of this study was to map kernel hardness in a soft durum wheat population derived from the cross between the varieties “Creso” and “Langdon 1–678“. In all, 428 F6 lines were evaluated for kernel hardness through the Single Kernel Characterization System; Hardness Index (HI) values ranged from −2 to 44. The same lines were genotyped using genotyping-by-sequencing, targeted amplicon sequencing, and sequence-tagged-site markers. A total of 8537 markers were used to conduct single marker-trait association analysis and two major significant regions were identified on chromosomes 3AL and 6AS each responsible for an additive effect of ∼6 HI units. Kompetitive allele specific markers targeting these regions were selected and tested in the whole population. To date, this is the first study to investigate the genetic factors behind hardness variation in durum wheat.  相似文献   

3.
The effects of particle size of granulars (semolina and flour combined), gluten strength, protein composition and fermentation time on the breadmaking performance were compared for eleven durum wheat genotypes of diverse strength from North America and Italy grown in the same environment. All genotypes were γ-gliadin 45 types (low-molecular weight glutenin subunit 2 patterns) associated with superior pasta-making quality. Three cultivars with high-molecular weight glutenin subunit 20 exhibited relatively weak gluten, confirming that this subunit is associated with weakness in durum wheat. Gluten strength as measured by a range of technological tests was directly and strongly related to the proportion of insoluble glutenin (IG) in granulars protein as determined by a spectrophotometric procedure. Reducing the particle size of granulars by gradual reduction shortened development time in both the farinograph and mixograph. Reducing granulars also increased starch damage and, accordingly, farinograph water absorption, but remix-to-peak baking absorption was unaffected due to increased fermentation loss for finer granulars. Neither loaf volume, nor remix-to-peak mixing time were affected by the particle size of the granulars indicating that regrinding is not an asset for baking provided there is adequate gassing power. Loaf volume was directly related to gluten strength and IG content, and inversely related to residue protein, a non-gluten containing fraction. When fermentation time was reduced from the standard 165 to 90 min and 15 min, all genotypes exhibited a progressive increase in loaf volume. Therefore, regardless of strength, short fermentation time is preferred when high volume durum wheat bread is desired. Some of the stronger durum genotypes exhibited remix-to-peak bread volume comparable to that expected of good quality bread wheat, indicating that there is potential to select for genotypes with improved baking quality in conventional breeding programs by screening for high content of insoluble glutenin.  相似文献   

4.
In this work, we compared the proteome of mature and immature kernels of transgenic and untransformed durum wheat lines in which genes of the starch branching enzymes of class II (SBEIIa) were silenced by RNA interference using two different methods of genetic transformation. The comparative analysis of granule bound and metabolic protein fractions of Svevo and Ofanto and their derived transgenic lines highlighted twenty four and thirty three differentially accumulated spots, respectively, in the line MJ16-112 (obtained by biolistic transformation of Svevo) and in the line A431_4p1a (obtained by Agrobacterium-mediated transformation of Ofanto).  相似文献   

5.
云南不同生态环境对硬粒小麦品质的影响   总被引:7,自引:0,他引:7  
选用云南生产上种植的硬粒小麦品种“780”为材料,通过3个不同生态试点、两种栽培方式对硬粒小麦籽粒品质性状影响的研究得出:在相同栽培条件下,蛋白质含量、湿面筋含量、沉隆值、形成时间、评价值、耐揉指数等随海拔高度的升高面升高,出粉率、吸水率等随海拔高度的升高而降低,稳定时间、弱化度、和面时间、断裂时间等表现为中海拔高于低海拔、高海拔。总的来看,硬粒小麦品质性状表现为田麦栽培方式优于地麦栽培方式。  相似文献   

6.
Durum wheat is an important crop widely distributed which grain is used in the elaboration of diverse food products. Most notably, durum wheat is used for the production of high quality pasta all around the world, but also for bread, couscous or bulgur, among other products. The end-use quality of these products is heavily determined by the grain quality characteristics, which depend on the wheat variety cultivated, the environmental effects and GxE interactions. The present study was conducted using a collection of 46 commercial durum wheat varieties to describe the phenotypic variation of the main target traits determining wheat quality, ascertain the effects of drought stress (very common in durum areas) on grain quality traits, and to assess the relationship between allelic variations of glutenins composition and gluten properties. Overall the varieties from Australia, USA and Italy showed the best performance in terms of grain quality. Additionally, the effects of drought stress on grain quality traits were analyzed: some traits were favored due to a higher protein concentration but others, such as flour yellowness were not affected by drought stress. The analysis of the varieties' glutenins composition showed the positive or negative effect of some alleles on different quality traits.  相似文献   

7.
Yellow pigment (YP) concentration is an important quality trait in durum wheat and is comprised primarily of carotenoids. The main objective of our study was to measure the accumulation of carotenoids during the grain fill period to improve our understanding of the physiological basis for differences among durum wheat cultivars. Thirteen genotypes with large variation in total YP concentration were studied. Spikes were sampled from replicated field plots in 2007 and 2008 at 14, 21, 28 and 35 days after heading (DAH). The remainder of each plot was harvested at grain maturity for analysis. trans-Lutein was the predominant carotenoid at maturity and was detected at 14 DAH in all genotypes. The rate and duration of lutein accumulation was variable among genotypes expressing high, intermediate and low YP. The accumulation of all carotenoids was lowest in genotypes expressing low YP, and suggests rate limitations early in the carotenoid biosynthetic pathway. The ratio of trans-zeaxanthin to trans-lutein was inversely correlated with total YP and suggests that the β,? branch of lycopene cyclization leading to α-carotene and thus lutein, synthesis may also be limiting in low-YP genotypes. These results provide insights into the regulation of the carotenoid biosynthetic pathway in durum wheat grain.  相似文献   

8.
A bright yellow color is an important quality criterion for pasta making. Yellow color depends on the amount of carotenoid pigments in grain, which is the result of the balance between pigment synthesis and degradation by lipoxygenases (LPX). The organization of genes coding for lipoxygenases in the tetraploid wheat genome is not completely understood. Here, we report the screening of a durum wheat BAC library with barley probes to characterize the physical distribution of Lpx genes. PCR characterization and BAC fingerprinting of the positive clones suggests that Lpx-B1.1 and Lpx-B3 are less than 103-kb apart, whereas Lpx-B1.2 is further apart from them. In the A genome a partially deleted copy of Lpx-1 (Lpx-A1_like) was found, colocalizing within a 42 kbp region with Lpx-A3, confirming that in both genomes these two genes are close to each other. The knowledge of the physical location of these two genes is important to understand the evolution of this family but also has practical implications since closely linked genes are difficult to separate by recombination. This may limit the number of Lpx allele combinations that can be obtained and affect the selection of optimal Lpx allele combinations for pasta quality improvement.  相似文献   

9.
Yellow pigment content (YPC), lipoxygenase (LPX) activity and the polymorphism at the Lpx-B1.1 locus were assessed on an Italian durum wheat germplasm collection and four varieties contrasting for YPC and LPX activity were then characterized in terms of Lpx gene expression, biochemical LPX properties and their performance during pasta processing. The screening of 71 genotypes showed a great genetic variability for YPC (3.68–9.43 μg/g dw) and LPX activity (0.02–7.91 EU/g dw). The Lpx-B1.1 polymorphism was significantly associated with differences in LPX activity. Besides the Lpx-B1.1 deletion, different expression levels of Lpx mRNAs were found associated with differences in LPX activity. The temporal expression of three Lpx genes showed different profiles among the cultivars investigated. Genotypes with high LPX activity showed an anticipated temporal expression for Lpx-1 compared to low LPX activity ones. The LPX activity in the analysed genotypes is most likely due to the contribution of different LPX isoforms observed in the later stage of grain filling.  相似文献   

10.
The degradation effects of wheat bug protease(s) on glutenin proteins of durum wheat cultivars were investigated by electrophoresis and modified rapid visco analyser (RVA) test. Glutenin patterns of the bug damaged durum wheats changed substantially due to bug protease(s). Although high molecular weight glutenin subunits (HMW-GS) of three cultivars (Ege, Svevo, and Zenith) disappeared after 60 min of incubation, the HMW-GS of other two cultivars (Diyarbakir and Firat) were still visible even after the longest incubation period at medium damage level. It shows that there was an intercultivar variation in susceptibility to hydrolysis by bug proteolytic enzymes. Low molecular weight glutenin subunits of all cultivars decreased substantially after 30 min of incubation. The RVA curves indicated a clear reduction in viscosity in semolina samples with both medium and high damage levels as compared to their respective undamaged (control) samples. There were significant correlations (p < 0.001) between bug damage level and viscosities at 3 min (r = −0.765), at 4.5 min (r = −0.549) and at 10 min (r = −0.835), breakdown value (r = −0.534) and decay rate (r = 0.600). Consequently, hydrolysis rate of wheat bug protease(s) can be determined by modified RVA technique without much more chemicals, procedures and expensive equipments.  相似文献   

11.
In this study 7 bran fractions were produced by grinding coarse durum wheat bran followed by sieving to achieve median particle size ranges between 115 and 1497 μm. These bran fractions were incorporated into pasta at 1, 5, 10 and 20% and the phytochemical and technological properties evaluated. Higher incorporation of bran, especially at 20%, reduced pasta quality, but a reduced impact was seen at the same degree of incorporation using finer bran. Bran increased antioxidants (by up to 65%), ferulic acid (up to 400%) and phytosterols (up to 130%) in pasta, parameters which were insensitive to bran particle size above 10% incorporation except for ferulic acid, which was higher in particles between 248 and 1497 μm. It is recommended to use finer fractions if bran is added to pasta at 20% and higher, since they provide a better quality pasta while still delivering enhancements in phytochemical content above regular semolina pasta.  相似文献   

12.
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions.  相似文献   

13.
Although pasta is generally not considered for its aromatic properties, some evidence proves that cereal flours release volatile compounds and they might have an effect on the aroma of the transformed products. This work reports on the characterization of the volatile components of semolina and pasta obtained from four durum wheat cultivars (Triticum durum Desf., cvs. PR22D89, Creso, Cappelli, Trinakria). Semolina samples were characterized through polar metabolite profiling and fatty acid analysis to identify potential precursors of the volatile components. The results show significant differences among the samples tested with cv. Trinakria characterized by the highest content of sugars and fatty acids. Volatile composition was investigated both in semolina and in cooked pasta using headspace solid-phase micro-extraction (HS-SPME) and identified by GC–MS. Thirty-five volatile compounds including aldehydes, ketones, alcohols, terpenes, esters, hydrocarbons and a furan were identified. Significant differences were observed between semolina and pasta samples in terms of composition and amount of the volatile compounds. During cooking an increase in aldehyde content, the appearance of ketones and a decrease in alcohol content were observed. Correlations between metabolites and volatiles demonstrate that the flavour of cooked pasta may differ significantly depending on the durum wheat cultivar employed.  相似文献   

14.
The feasibility of applying FT-NIR spectroscopy (a rapid and non-destructive method) to evaluate and predict semolina characteristics by means of spectra collected directly from the kernels was investigated. More than 500 samples of durum wheat grains and of the corresponding semolina, representative of the Italian production of 4 different crops (from 2002/2003 to 2005/2006) were analyzed. Pasta-making capability of each semolina sample was assessed by the reference methods, for protein, gluten content, gluten index and alveographic indices. The kernels were also evaluated by a FT-NIR spectrometer, fitted with an integration sphere working in diffuse reflectance. The processed spectra collected on the kernels were correlated with the chemical and rheological parameters obtained by the reference tests performed on semolina. The PLS algorithm was used to develop calibration models from the original spectra datasets. Protein content proved to be well correlated to kernel spectral data: high values for the RPD indicate efficient NIR reflectance predictions for protein content. The models obtained for gluten content, gluten index and alveographic W and P/L parameters were less successful. The results of this work highlighted the feasibility of applying FT-NIR spectroscopy to evaluate and predict the technological properties of semolina, in particular that of the protein content, by collecting the spectra directly from the kernels, without performing further grinding or milling operations.  相似文献   

15.
A bright yellow colour of pasta is an important qualitative trait for the durum wheat industry. Final colour is the result of the balance between yellow and brown components in semolina. Carotenoid pigments and lipoxygenase (LOX) enzyme are mainly involved in yellowness, whereas peroxidase (POD) and ash affect brown hue. All these components have a different distribution across the kernel, with varietal differences too. This study aimed to evaluate the distribution pattern of carotenoid pigments, α-tocopherol, linoleic acid, and ash content as well as of LOX and POD activities within the kernel of six durum wheat cultivars characterised by different pigment content and hydroperoxidation activity of LOX in semolina. The results confirmed differences in the distribution of these components across the kernel and among varieties. Additionally, this study identified for some components (POD, pigments and bleaching activity of LOX) a higher effect of genotype whereas for others (ash, α-tocopherol, hydroperoxidation activity) a marked effect of the debranning process. These results suggest that improvement of the final semolina colour could be reached both through breeding activity, enabling an early selection of better lines, and through an appropriate debranning process.  相似文献   

16.
Mineral deficiencies are prevalent in human populations and the improvement of the mineral content in cereal products represents a possible strategy to increase the human mineral intake. Nevertheless, most of the inorganic phosphorus (Pi) present in mature cereal seeds (40–80%) is stored as phytate, an anti-nutritional factor that forms complexes with minerals such as Ca, Mg, Zn and Fe reducing their bioavailability. The present study was undertaken: (i) to determine the variation in phytate and mineral concentrations in the whole grains of 84 Italian durum wheat (Triticum durum Desf.) cultivars representative of old and modern germplasm; (ii) to estimate the magnitude of genotype × environment interaction effects; and (iii) to examine the interrelationships among mineral concentrations in durum wheat with the final aim to identify superior durum wheat cultivars that possess low phytate content and high concentration of mineral elements in their whole-wheat flour. The cultivars were grown in field trials during 2004–2005 at Foggia, Italy and during 2005–2006 at Foggia and Fiorenzuola d’Arda—Southern and Northern Italy. The phytate content was estimated indirectly by using a microtitre plate assay evaluating the Pi absorbance at 820 nm, while the Cu, Fe, Mn, Ca, K, Mg, Na and Zn mineral contents were determined by ICP/OES. The contents of Zn and Fe across years and locations ranged from 28.5 to 46.3 mg/kg for Zn with an average of 37.4 mg/kg and from 33.6 to 65.6 mg/kg for Fe with an average of 49.6 mg/kg. Pi grain content was between 0.46 and 0.76 mg/g showing a positive correlation with all minerals except Cu and Zn. Although breeding activity for Fe and Zn would be difficult because G × E interaction is prevalent, multi-location evaluation of germplasm collection help to identify superior genotypes to achieve this objective. The results here reported open the possibility of designing a specific breeding program for improving the nutritional value of durum wheat through the identification of parental lines with low-Pi and high minerals concentration in whole grains.  相似文献   

17.
The aim of this experimental work was to evaluate the effect of inulin addition on the rheological properties of common wheat doughs and bread quality. Three commercial fructan products of different number average degree of polymerisation (DPn) were used (DPn = 10 for inulin ST; DPn = 23 for inulin HP and HP-gel). Inulin contents from 2.5 to 7.5% on dry matter (wheat flour plus inulin) were used. Dough rheological properties were investigated using farinograph and dynamic rheological measurements. Upon addition of dietary fibre (DF), significant increase in mixing time and stability, and decrease in water absorption were recorded. Inulin ST exerted greater effect on water absorption than HP products.  相似文献   

18.
Eight genotypes from two different genetic pools (high yielding varieties and landraces) were assessed for grain yield (GY) and for five quality traits: protein content (P), thousand kernel weight (TKW), yellow berry (YB), gluten content (Gc) and gluten index (Gi) in sub-humid and semi-arid areas using four combinations of nitrogen and potassium fertilizers during two cropping seasons. Genotype × Environment × Fertilizers (G × E × F) was significant only for protein content (p < 0.05); and E × F was found significant (p < 0.05) for all parameters. Greater quality related traits expression was noted in the semi-arid areas for both genetic pools. Excessive rainfall in semi-arid areas resulted in gluten elasticity reduction. N-fertilizers seemed to enhance protein content and to reduce thousand kernel weight. K-fertilizer, might enhance the increase in both proteins and thousand kernel weight in favorable growing conditions of water availability. Semolina yielding ability was higher in landraces as compared to high yielding varieties particularly using recommended fertilizer management. This group of cultivars showed superiority over high yielding cultivars for quantitative quality parameters.  相似文献   

19.
Samples of Canadian amber durum wheat varieties, of various protein content and a composite of export cargo samples, were milled to yield straight-grade and patent flours by reducing semolina and processed into yellow alkaline noodles (YAN). Samples of Canada Hard White Spring (CWHWS) and Canada Western Red Spring (CWRS) were included for comparative purposes. YAN from durum wheat displayed a colour advantage over CWRS and CWHWS YAN. The durum YAN displayed an approximate 9–20 unit greater b* (yellowness) value than CWRS and CWHWS at 2 and 24 h after preparation. This relates to greater yellow pigment and flavonoid contents in the durum flours. All durum wheat YAN exhibited excellent noodle brightness, which was retained over time due to lower levels of the enzymes polyphenol oxidase (PPO) and peroxidase (POD). Durum noodles displayed significantly fewer specks than CWRS and were comparable to CWHWS. Durum wheat YAN cooking quality was equal to or slightly superior to CWRS and CWHWS. Durum wheat flour refinement imparted no significant effects on cooked noodle texture (maximum cutting stress, recovery, resistance to compression). However, the various texture parameters improved with durum wheat protein content and gluten strength.  相似文献   

20.
Since the production of durum wheat in the drier areas of the Mediterranean Basin is characterized by high variability in terms of yield and grain quality, there is also considerable interest in developing durum wheat in the northern regions, where the pedo-climatic conditions can offer the possibility of obtaining grain yields with higher technological quality and stability. However, the climatic conditions in the northern regions make durum wheat more prone to fungal foliar disease, particularly to Septoria Tritici Blotch (Septoria tritici Rob.) and to Fusarium Head Blight (Fusarium graminearum Petch and Fusarium culmorum Sacc.), with the consequent occurrence of DON in grains.Field experiments have been conducted over two growing seasons at four sites in North West Italy to evaluate the effect of fungicides and foliar nitrogen fertilizer application on durum wheat yield and grain quality. Five combinations of foliar application were compared at each site and each year (untreated control, azole fungicide application at heading, strobilurin fungicide at the stem elongation stage and/or at heading, the addition of a foliar N fertilizer to a fungicide programme). The following parameters were analysed: Septoria Tritici Blotch (STB) severity, flag leaf greenness using a chlorophyll meter, grain yield, test weight, grain protein content, ash content, vitreousness, Fusarium Head Blight (FHB) incidence and severity and deoxynivalenol (DON) contamination. The collected data underline that the cultivation of durum wheat at the climatic conditions of North Italy is actually risky and needs a direct control of fungal disease, which would be able to reduce the development of both foliar and head attacks. The double treatment, with a strobilurin application during the stem elongation stage and azole at heading, results to be an essential practice and showed advantages in terms of the delay of flag leaf senescence (+27%), STB control (+31), FHB control (+11%), yield (+32%) and DON contamination (−45%), compared to the untreated control. Other foliar treatments at heading, such as strobilurin or foliar N fertilizer applications, do not seem to provide any further advantage, for either grain yield or quality. No significant effect of fungicide or foliar N fertilizer application was recorded on the protein or ash concentration or vitreousness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号