首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a study on the impact of baking conditions on crumb staling. Breads were baked at 220 °C, 200 °C and 180 °C corresponding to 6, 8 and 10 min to rise the temperature to 98 °C in the crumb (heating rates 13, 9.8 and 7.8 °C/min respectively with an initial temperature of 20 °C). A new protocol has been developed, consisting in baking a slab of degassed dough in a miniaturized oven to mimic the baking conditions of conventional bread making. Texture tests were done during staling on degassed crumb and on conventional crumb. Calorimetry tests showed that during storage, amylopectin recrystallisation occurred before crumb stiffening. A first order kinetics model was used to fit the evolution of the crumb texture (Young's modulus) and of the recrystallisation of amylopectin. The results showed that the hardening of the crumb during staling occurred after retrogradation of amylopectin. In addition, the staling rate was faster for faster baking kinetics. A mechanical model showed that the relative Young modulus is proportional to the square of the relative density of the crumb.  相似文献   

2.
Bread staling involves a combination of physico-chemical phenomena that leads to a reduction of quality. This study aims at evaluating the impact of baking conditions (280 °C, 8 min; 310 °C, 5.5 min; 340 °C, 4 min), baking type (of fully baked (FB) and part-baked (PB)) and storage temperature (−18, 4 and 20 °C) on the staling of Sangak bread. Results showed that lower baking temperature with longer baking time produced drier bread with higher firmness. In FB Sangak breads, amylopectin retrogradation, amount of unfreezable water and firmness (measured by compression test) increased during storage at positive temperatures but hardness (determined by Kramer shear test) decreased significantly during first day of storage. The recrystallized amylopectin traps the free water resulting in crumb hardening. Water is also absorbed by the dry crust resulting in changes of rheological properties in the crust and crumb, and finally in staling. Storage at 4 °C resulted in increasing melting enthalpy of amylopectin crystallite in comparison with storage at 20 °C. Also it was found that firmness of PB breads due to rebaking was significantly lower than FB breads. There were no significant changes in staling parameters of FB and PB stored at −18 °C.  相似文献   

3.
High fibre breads were produced with the addition of durum wheat bran fractions (regular bran and a fraction extracted from the most internal bran layer) and their physico-chemical properties and water status were characterised during storage. Bran enriched breads exhibited similar properties during storage, they were harder, less springy and less cohesive than the control. Water status was strongly affected by bran addition, independently of bran composition: water activity, moisture and frozen water content (measured by Differential Scanning Calorimetry) were generally higher in the bran samples than in the control bread during storage. Amylopectin retrogradation was significantly larger in the presence of bran fractions. 1H NMR mobility (T2 number of populations and relaxation times) was different in the high fibre breads as compared to the control sample. The changes in protons mobility observed upon storage indicated an influence of bran on water/gluten/starch molecular domains and their dynamics, that may have affected the development of the gluten network resulting in different textural properties.  相似文献   

4.
Partly baked (PB) and fully baked (FB) breads were frozen at −18 °C for 7, 21, 63, 92, 126 and 188 d and were analysed after its thawing (FB) or thawing and final baking (PB). The starch retrogradation, the moisture content and the firmness were measured as properties closely related to the aging of bread. The temperature of glass transition of the maximally freeze-concentrated state, Tg′, was also measured and established in (−18 ± 0.8) °C. This value cannot ensure molecular immobility in both types of bread during its frozen storage at (−18 ± 2) °C. Consequently, the rearrangements of starch component molecules, needed for its recrystallization and for the diffusion of water during frozen storage, could take place and could justify the changes observed in the bread. PB bread showed a significant decrease in firmness with frozen storage, while the firmness of the FB bread did not change significantly, although an increase when compared with the control, not frozen bread, was detected. A regression study led to the conclusion that the combined effect of starch component crystallization and water loss could explain the firming evolution and that both variables exerted an effect of similar intensity on crumb firmness.  相似文献   

5.
The aim of this work was to investigate the effects of chitosan oligosaccharides and chitosan on the rate of staling and properties of bread crumb and crust. Rates of crumb firming varied with storage time. The possible mechanisms including prevention of amylose–lipid complexation, acceleration of dehydration from both starch and gluten, adsorption of chitosan onto the starch surface and increase of moisture migration rate from crumb to crust are proposed and analysed. Chitosan oligosaccharides and low molecular weight chitosan increase bread crumb staling rate to a much lesser extent than does middle molecular weight chitosan.  相似文献   

6.
Effect of adding flaxseed flour (10%, 20% and 30% w/w) to wheat flour on rheological properties of dough, including water absorption, stability and development time, extensibility and resistance to extension, was studied at 45, 90 and 135 min proving time. Qualitative properties of toast regarding staling (after 24 and 72 h) were determined. Phenolic compounds, peroxide values, sensory characteristics and color indices of the breads were evaluated. The results indicated that water absorption and development time increased as the proportion of flaxseed increased in dough. Stability decreased with the increment of flax flour compared to control sample (100% wheat flour). Extensibility and resistance to extension of flaxseed samples respectively decreased and increased comparing to those of control sample. Staling in toast with 20% flaxseed flour was seen to be lower than that of the control. Adding flax flour caused phenolic compounds to increase, however it decreased peroxide value. Bread color parameters L and a reduced by adding flax flour, while parameter b did not show significant different compared to the control (p < 0.05). Results of sensory evaluation indicated that brightness of the toasts decreased with increasing flaxseed flour and that 30% flaxseed toast had the lowest score for overall acceptability.  相似文献   

7.
Gluten-free bread often has low nutritive value, high glycemic index (GI) and short shelf-life. The aim of this research was to investigate the influence of sourdough addition on GI, quality parameters and firming kinetics of gluten-free bread produced by partially baked frozen technology. Sourdough was fermented with a commercial starter of Lactobacillus fermentum and added to bread batter at four levels (7.5; 15; 22.5 or 30%). We determined biochemical characteristics of the sourdough and bread chemical composition, glycemic index in vivo, physical properties and firming kinetics after final rebaking. All breads were enriched with inulin and were high in fiber (>6 g/100 g). Control bread that was prepared without sourdough had medium GI (68). Sourdough addition decreased bread GI. However, only breads with 15 and 22.5% of sourdough had low GI. Moreover, addition of 15 and 22.5% of sourdough had positively affected the quality parameters of partially baked frozen bread: specific volume increased, crumb firmness decreased and firming was delayed. In conclusion, the combined application of sourdough and partially baked frozen technology can decrease glycemic index, improve quality and shelf-life of gluten-free bread. Such breads can be recommended as a part of well balanced gluten-free diet.  相似文献   

8.
The difficulty in finding gluten-free bread and its high price make it necessary to prolong its shelf life to facilitate its availability. Freezing is an interesting alternative. The storage of bread at over zero temperatures, 20 °C and 4 °C, showed faster staling at refrigerator temperatures. A good relationship between crumb firmness and the extent of starch recrystallization was obtained, although the effect of water loss was also detected. The study of freezing and frozen storage at −14 °C and −28 °C for 7 days showed a substantial effect of the storage temperature on gluten-free bread quality and shelf life. Breads stored at −28 °C retained a quality similar to that of fresh breads while a marked deterioration of the breads stored at −14 °C was observed. This effect, the strongest on bread texture, was a result of starch recrystallization. The glass transition, Tg’ and onset of ice melting, Tm’ of the maximally freeze-concentrated bread crumb were −37.1 ± 0.6 °C and −19.3 ± 0.2 °C respectively. The higher amount of unfrozen water at −14 °C could explain the acceleration of reactions responsible for bread staling during frozen storage. The use of storage temperatures below Tm’ is recommended to retain high quality of the gluten-free bread during frozen storage.  相似文献   

9.
椰子是重要的热带木本油料作物,对温度条件要求高。通过对海南省8个市(县)开展椰子寒害调查,并结合部分市(县)的物候资料研究影响椰子叶片生长和裂果的主要原因。结果表明,椰子寒害及其形成与低温多雨关系密切,是椰子裂果的主要因素,雨水是椰子裂果的诱发因素。寒害对热带作物的生长发育影响严重,引起椰子寒害的类型为低温型、低温-多雨型,二者的危害程度及时效不同,采取不同的栽培措施,对椰子的抗寒栽培具有重要意义。  相似文献   

10.
Staling of bread is a major source of food waste and efficient monitoring of it can help the food industry in the development of anti-staling recipes. While the staling fingerprint in the mid-infrared region is fairly well established this paper set out to find the most informative parts of the near-infrared spectra with respect to staling. For this purpose, two-dimensional correlation spectroscopy on near- and mid-infrared spectra of wheat bread crumb during aging was employed for the first time. The important mid-infrared absorption band at 1047 cm−1 related to amylopectin retrogradation was found to correlate positively with increased bread hardness and to co-vary with the near-infrared band at 910 nm in the short wavelength region (r2 = 0.88 to hardness), the near-infrared band at 1688 nm in the 1. overtone region (r2 = 0.97 to hardness) and to the near-infrared band in the long wavelength region at 2288 nm (r2 = 0.97 to hardness). The spectral information from the first principal component on near-infrared and the first principal component on mid-infrared was found to be highly correlated by a r2 = 0.98. It is demonstrated that the major bread staling processes such as amylopectin retrogradation and water loss can be followed with both near- and mid-infrared spectroscopy.  相似文献   

11.
Physico-chemical properties of bread baked by partially replacing normal wheat (Triticum aestivum L.) flour (15, 30, and 45%) with two hard waxy wheat flours were investigated. Substitution with waxy wheat flour resulted in higher loaf volume and softer loaves. However, substitution at >30% resulted in excessive post-bake shrinkage and a ‘key-hole’ shape with an open crumb structure. Bread crumb microstructure indicated a loss of starch granule rigidity and fusing of starch granules. The cells in the interior of the bread did not become gas-continuous and as a result, shrunk as the loaf cooled. Soluble starch content was significantly higher in bread crumb containing waxy wheat flour than in control bread. Debranching studies indicated that the soluble starch in bread made with 30-45% hard waxy wheat flour was mostly amylopectin. Incorporation of waxy wheat flour resulted in softer bread immediately after baking but did not retard staling upon storage.  相似文献   

12.
The effects of different process conditions on the pasting behavior of the 14%, w/w suspensions of high amylose, waxy and normal maize starches at mixing speeds of 50, 160 and 250 rpm with the heating rates of 2.5, 5 and 10 °C/min were investigated. In addition, the impact of the starch mixture with an amylose-amylopectin ratio of 0–70% at 160 rpm and a heating rate of 5 °C/min on the pasting parameters was studied. According to the results, when stirring speed decreased from 250 rpm to 50 rpm, the peak viscosity dramatically increased. Furthermore, both heating and stirring rates significantly affected the pasting properties (p < 0.05). The amylose content of maize starch had a negative correlation with peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity. Besides, syneresis values decreased as amylose content decreased from 70% to 0%. According to the kinetic modelling of pasting curves, starch coefficients were found to be higher than 1 for all starches, indicating that the penetration of water into starch granules increased granule swelling rate. The findings of the present study confirmed that both process conditions and amylose/amylopectin ratio can be optimized without necessity of starch modification to obtain the products with the desired quality.  相似文献   

13.
During baking, bread dough undergoes an expansion followed by a slight contraction at the end of baking. The contraction during baking has been evidenced by some authors. However, there is a limited amount of literature about the contraction of the crumb during the chilling phase and also during the freezing phase in the case of freezing. A study has been carried out to better understand the impact of the baking degree on the contraction of the crumb during chilling after baking and during freezing. The volume of the samples has been evaluated with a laser volumeter. Breads (70 g dough) were baked until reaching 75 °C, 85 °C, 95 °C, 98 °C and then 98 °C for 10 min. Results showed that a longer baking resulted in a lower contraction of the bread. The volume change was between 25% and 2.5% for baking at 75 °C—0 min dwell and 98 °C—10 min dwell, respectively. The contraction was compared to the contraction of degassed bread crumb samples, which was more important. SEM pictures showed that the degree of baking also corresponded to a very different structure of the crumb. For the longer baking, the starch granules were fully gelatinized and no ghosts of starch granules were visible. The magnitude of the contraction was thus associated with the degree of baking and with the degree of starch granule destructuration.  相似文献   

14.
Quality characteristics of northern-style Chinese steamed bread (CSB) prepared from two soft red winter (SRW) wheat flours blended with 0–30% waxy wheat flour (WWF) were analyzed to estimate the influence of starch amylose content. The increased proportion of WWF in blends raised mixograph absorption with insignificant changes in protein content and dough strength-related parameters. WWF incorporation generally increased specific volume and crumb softness of CSB. The analysis of covariance revealed that CSB quality attributes were little affected by protein content and dough strength-related parameters, indicating that starch amylose content was largely responsible for the changes in CSB quality. Flour blends with 5–10% WWF, of which starch amylose content was 22.4–24.7%, produced CSB with superior crumb structure compared to other blends, but insignificant changes in surface smoothness, stress relaxation and total score compared to the respective control wheat flours. Flour blends with 15% WWF to produce a starch amylose content of 21.4–22.7% exhibited reduced staling of CSB with total scores comparable to the respective control wheat flours. CSB prepared from blends with more than 10% WWF exhibited a higher soluble starch content, indicative of reduced starch retrogradation, than that prepared from wheat flours without WWF during storage for 3 days.  相似文献   

15.
The effect of the recombinantly produced xylanase B (XynB) from Thermotoga maritima MSB8 on the quality of frozen partially baked bread (FPBB) was investigated. Addition of XynB to wheat flour dough resulted in a significant increase in dough extensibility (L), swelling (G), and a decrease in dough resistance to deformation (P), configuration. Bread crumb characteristics were studied by differential scanning calorimeter (DSC) and dynamic-mechanical analysis (DMA). The results show that addition of XynB leads to improvements in the bread quality of FPBB and retards bread staling compared to the control. The greatest improvements were obtained in specific volume (+35.2%) and crumb firmness (−40.0%). The control FPBB was significantly firmer in texture and higher in amylopectin recrystallization than the bread with XynB. During frozen storage of FPBB with and without XynB for 8 weeks, the crumb firmness increased gradually and the specific volume slightly decreased with the frozen storage time. The ΔH values of freezable water (FW) endothermic transitions increased with frozen storage time for all samples. However, addition of XynB lowered the ΔH values indicating a decrease in FW. Therefore, XynB is useful in improving the quality of FPBB. DMA was also used to monitor the shrinking behavior of the samples. Addition of XynB increased the contraction during chilling but significantly diminished the total shrinking and frozen-state shrinking of the bread crumb during the freezing process.  相似文献   

16.
This study clearly demonstrates that formulation and baking technology have strong influence on the acrylamide content in the baked products. NaCl plays an ambiguous role: Whereas low doses up to 2% lowered acrylamide by inhibition of the enzyme activities, higher addition remarkably increased the contents due to growth inhibition of the yeast. The results of previous model studies concerning the influence of cysteine could be confirmed in pilot plant experiments. Its addition to the dough resulted in significantly lower acrylamide content whereas its application to the crust proved to be ineffective. Furthermore, it was demonstrated that enzyme-bearing bakery improvers had no influence on acrylamide formation. In pilot plant experiments acrylamide was reduced with increasing fermentation time, and minimum acrylamide levels were already reached after 60 min thus avoiding flattened breads due to prolonged amylase activity. Besides formulation and fermentation also process technology is crucial. As shown by our data, reduced baking temperature and prolonged heat treatment is favorable. Furthermore, convection ovens seem to enhance acrylamide formation compared to deck oven.  相似文献   

17.
In order to investigate the influence of different packaging temperature on thermal-vacuum packaged Chinese steamed bread (CSB) quality under room temperature storage, the packaging temperatures of 50 °C, 70 °C and 90 °C were set respectively to study the effect on the packaging vacuum degree (VD) and starch retrogradation properties. The VD and moisture content of thermal-vacuum packaged CSB significantly increased with the increase of the packaging temperature from 50 °C to 90 °C, while the hardness of CSB decreased, and there was no significant difference in moisture migration during room temperature storage. The results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and small angle X-ray scattering (SAXS) indicated that CSB packaged at different temperatures formed B-type crystals, leading to an enhanced the ordered and dense state of starch structure, and the semi-crystalline growth ring structure disappeared during storage. The influence of different packaging temperatures on VD of CSB could effectively hinder the formation of ordered and dense state of CSB starch, consequently delaying the crystallization of amylopectin and inhibiting the progress of staling. The result of this study is of great significance for improving the quality of starchy foods and guiding the industrial development of Chinese steamed bread.  相似文献   

18.
19.
20.
The effect of gluten on the retrogradation of wheat starch   总被引:1,自引:0,他引:1  
The retrogradation of amylopectin in a wheat starch and a wheat starch/gluten (10:1) blend prepared by extrusion and containing 34% water (wet weight basis) was studied using X-ray diffraction, differential scanning calorimetry and NMR relaxometry during storage at constant water content and temperature (25 °C). For both samples, amylopectin ‘fully’ retrograded after 2–3 days storage, i.e. the different parameters monitored with time to follow the retrogradation had reached their maximum value, and crystallised predominantly into the A polymorph. Under the experimental conditions used, there was no evidence of any significant effects of the presence of gluten on the kinetics, extent or polymorphism of amylopectin retrogradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号