首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Previous studies have demonstrated that a loss of parvalbumin-immunoreactive (PV-ir) neurones is observed in the hippocampus after transient cerebral ischaemia. However, whether the loss of parvalbumin (PV) immunoreactivity is related to the over-production of nitric oxide (NO) during cerebral ischaemia has not been evaluated. This study was designed to test the effect of 7-nitroindazole pre-treatment (7-NI, 50 mg/kg), a selective neuronal NO synthase inhibitor, on PV immunoreactivity and its cellular activity following forebrain ischaemia. PV-ir neurones in the hippocampus of the control group were widely distributed in the pyramidal cell layer and stratum oriens of CA1 and CA3, and the granular cell layer of dentate gyrus. 7-NI pre-treatment completely suppressed the reduction of PV immunoreactivity in CA1 that was observed in the ischaemia-induced group. Subsequently, 7-NI pre-treatment also protected against the structural loss of microtubule-associated protein 2 (MAP2) immunoreactivity in CA1 after ischaemic insult. In addition, the Fos-defined neuronal activity of PV-ir neurones was slightly increased by the 7-NI pre-treatment 3 h after ischaemia. Based on these data, we conclude that the neuronal toxicity of NO may be involved in the loss of PV-ir neurones after cerebral ischaemia.  相似文献   

2.
Hippocalcin participates in the maintenance of neuronal calcium homeostasis. In the present study, we examined the time-course changes of neuronal degeneration and hippocalcin protein level in the mouse hippocampus following pilocarpine-induced status epilepticus (SE). Marked neuronal degeneration was observed in the hippocampus after SE in a time-dependent manner, although neuronal degeneration differed according to the hippocampal subregions. Almost no hippocalcin immunoreactivity was detected in the pyramidal neurons of the cornu ammonis 1 (CA1) region from 6 h after SE. However, many pyramidal neurons in the CA2 region showed hippocalcin immunoreactivity until 24 h after SE. In the CA3 region, only a few hippocalcin immunoreactive cells were observed at 12 h after SE, and almost no hippocalcin immunoreactivity was observed in the pyramidal neurons from 24 h after SE. Hippocalcin immunoreactivity in the polymorphic cells of the dentate gyrus was markedly decreased from 6 h after SE. In addition, hippocalcin protein level in the hippocampus began to decrease from 6 h after SE, and was significantly decreased at 24 h and 48 h after pilocarpine-induced SE. These results indicate that marked reduction of hippocalcin level may be closely related to neuronal degeneration in the hippocampus following pilocarpine-induced SE.  相似文献   

3.
Calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus plays an important role in hippocampal excitability in epilepsy. In the present study, we investigated changes of CB immunoreactivity after adrenalectomy (ADX) in the hippocampus and dentate gyrus of the seizure sensitive gerbil, which is susceptible to seizure to identify roles of CB in epileptogenesis. The changes of the CB immunoreactivity after ADX were significant in the hippocampal CA1 region. By 24 h after ADX, CB-immunoreactive CA1 pyramidal cells and CB immunoreactivity increased. At this time, well-stained dendrites projected to the stratum radiatum. Thereafter, the CB immunoreactivity decreased time dependently by 96 h after ADX. In the dentate gyrus, the changes of CB-immunoreactive neurons were mainly observed in the granule cell layer. The number and immunoreactivity of CB-immunoreactive neurons was high at 24 h after ADX, thereafter, those decreased by 96 h after ADX. These results suggest that glucocorticoid has an important role in modulating the seizure activity and CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

4.
The hippocampus is affected by various stimuli that include hyperglycemia, depression, and ischemia. Calcium-binding proteins (CaBPs) have protective roles in the response to such stimuli. However, little is known about the expression of CaBPs under diabetic conditions. This study was conducted to examine alterations in the physiological parameters with type 1 diabetes induced with streptozotocin (STZ) as well as time-dependent changes in the expression of two CaBPs changes of were being evaluated. Rats treated with STZ (70 mg/kg) had high blood glucose levels (>21.4 mmol/L) along with increased food intake and water consumption volumes compared to the sham controls. In contrast, body weight of the animals treated with STZ was significantly reduced compared to the sham group. CB-specific immunoreactivity was generally increased in the hippocampal CA1 region and granule cell layer of the dentate gyrus (DG) 2 weeks after STZ treatment, but decreased thereafter in these regions. In contrast, the number of PV-immunoreactive neurons and fibers was unchanged in the hippocampus and DG 2 weeks after STZ treatment. However, this number subsequently decreased over time. These results suggest that CB and PV expression is lowest 3 weeks after STZ administration, and these deficits lead to disturbances in calcium homeostasis.  相似文献   

5.
Recent in vitro and in vivo studies have shown that glucocorticoids have a profound influence on the survival of hippocampal neurones, and that the depletion of glucocorticoids as a result of adrenalectomy (ADX) reduces nerve growth factor levels in the hippocampus. It is also believed that ADX is associated with the seizure susceptibility of the Mongolian gerbil. In the present study, the choronological changes of c-jun immunoreactivity were investigated after ADX in the hippocampal formations in the seizure-prone gerbil model. In the sham hippocampus, c-jun immunoreactivity was not observed in the neurones of the hippocampus proper and dentate gyrus. C-jun immunoreactive neurones appeared 3 h after ADX in the neurones of the CA1 area and dentate gyrus, and these immunoreactivities peaked 24 h after ADX and then gradually decreased. These results suggest that, in the adrenalectomized gerbil, c-jun may be expressed in the neurones of the hippocampus in compensation for glucocorticoid deficit. The result of enhanced c-jun expression of the hippocampal formation provides anatomical support for the hypothesis that c-jun may play a role in the reduction of seizure activity.  相似文献   

6.
Microglia are evenly distributed throughout the brain parenchyma. They respond rapidly to a variety of alterations in the microenvironment of the brain and act as sensors for pathological events in the brain. In the present study, we investigated the age-dependent changes in the immunoreactivity and protein level of ionized calcium-binding adapter molecule 1 (Iba-1), a microglial marker, in the CA1 region of the gerbil hippocampus. Iba-1 immunoreactive microglia were detected in the hippocampal CA1 region of the postnatal month 1 (PM 1) group. Iba-1 positive microglia were morphologically inactive between the PM 1 and PM 12 stages. Some Iba-1 immunoreactive microglia were present in the active form in the hippocampal CA1 region of the PM 18 and PM 24 groups. The Iba-1 protein levels in hippocampal CA1 homogenates were decreased in the PM 1 through PM 6 groups and increased in an age-dependent manner thereafter. These results suggest that Iba-1 immunoreactive microglia in the active form were detected in the hippocampal CA1 region in the PM 18 and PM 24 groups. This result may be associated with an age-dependent susceptibility to neurodegenerative diseases associated with the hippocampus.  相似文献   

7.
In the present study, we investigated expressions of vesicular glutamate transporter (VGLUT) and of the plasma membrane glutamate transporters [glutamate transporter 1 (GLT-1), glutamate/aspartate transporter (GLAST) and excitatory amino acid carrier 1 (EAAC-1)] in the gerbil hippocampus following transient ischaemia. The expressional levels and distribution patterns of VGLUT immunoreactivities were unaltered until 3 days after ischaemic-insults. However, VGLUT-2 immunoreactivity in the CA1 region was reduced at 4 days after ischaemia due to delayed neuronal death. In addition, both GLT-1 and GLAST immunoreactivities in the CA1 region were enhanced at 30 min - 12 h after ischaemia-reperfusion and their expression began to reduce at 24 h after ischaemia-reperfusion. In contrast, EAAC-1 immunoreactivity was transiently reduced in the CA1 region at 30 min after ischaemia, re-enhanced at 3-12 h after ischaemia, and re-reduced at 24 h after ischaemia. These findings suggest that malfunctions of plasma membrane glutamate transporters, not of VGLUT, may play an important role in the elevation of extracellular glutamate concentration following ischaemic insults.  相似文献   

8.
本研究旨在探讨右美托咪定干预氯胺酮致发育期大鼠神经损伤的影响及其可能的机制。7日龄SD大鼠随机分为对照组、氯胺酮组(氯胺酮20 mg·kg-1腹腔注射,每1.5 h注射1次,共5次)、右美托咪定组(右美托咪定腹腔注射15 μg·kg-1)和氯胺酮+右美托咪定组(氯胺酮注射前30 min,腹腔注射15 μg·kg-1右美托咪定)。最后1次给药90 min后,取大脑组织固定后进行尼氏染色;测定海马和皮质组织中CAT、GSH、MDA、IL-1β和IL-18的含量。尼氏染色结果显示,与对照组相比右美托咪定预先用药可以缓解氯胺酮导致的海马CA1区、CA3区和皮质区的神经元丢失。右美托咪定预处理还可以显著降低(P<0.05)海马和皮质MDA、IL-1β和IL-18水平,显著增加(P<0.05)CAT和GSH含量。综上表明,右美托咪定预处理能够有效降低海马和皮质MDA水平、增加CAT和GSH含量,并抑制炎症因子IL-1β和IL-18的分泌,在氯胺酮致发育期大鼠神经损伤时发挥神经保护作用。  相似文献   

9.
旨在研究限位栏饲养造成的制动应激对妊娠母猪神经元可塑性的影响,本研究选取6头8~9月龄配种成功的巴马小型母猪,随机分成两组,应激组(n=3)限位栏饲养,对照组(n=3)自由环境饲养,其余饲养管理一致。于妊娠第18天处死孕猪,取其海马和血液,使用ELISA、放射免疫法检测相关激素水平,制作海马石蜡切片进行尼氏染色和镀银染色后观察神经元丢失率、树突复杂度以及树突棘数量等,并采用Western blot检测海马脑源性神经营养因子(BDNF)表达水平。结果显示,应激组血浆中促肾上腺皮质激素释放激素(CRH)、促肾上腺皮质激素(ACTH)、皮质醇(COR)水平均显著上升(P≤0.05),齿状回(DG)和CA3区出现神经元丢失现象,CA3区锥形细胞树突复杂度下降,神经元成熟树突棘和未成熟树突棘数量均显著降低,DG的成熟树突棘数量显著降低,且海马内的BDNF蛋白表达量较对照组降低70.6%(P≤0.01)。因此,制动应激减弱了孕猪大脑海马中CA3区和DG的神经元可塑性。  相似文献   

10.
Astrocytes perform neuron-supportive tasks, repair and scarring process in the central nervous system. In this study, we observed glial fibrillary acidic protein (GFAP), a marker for astrocytes, immunoreactivity in the dentate gyrus and hippocampus proper (CA1-3 region) of adult (2-3 years of age) and aged (10-12 years of age) dogs. In the adult group, GFAP immunoreactive astrocytes were distributed in all layers of the dentate gyrus and CA1-3 region, except in the stratum pyramidale of the CA1-3 region. In the aged group, GFAP immunoreactivity decreased markedly in the molecular layer of the dentate gyrus. However, GFAP immunoreactivity in the CA1-3 region increased in all layers, and the cytoplasm of GFAP immunoreactive astrocytes was hypertrophied. GFAP protein levels in the aged dentate gyrus decreased; however, GFAP levels in the CA1-3 region increased. These results suggest that the morphology of astrocytes and GFAP protein levels in the hippocampal dentate gyrus and CA1 region are changed, respectively, with age.  相似文献   

11.
王昱  秦序  何九军 《中国畜牧兽医》2021,48(10):3864-3871
试验旨在探讨白肉灵芝水提物(Ganoderma leucocontextum aqueous extracts,GLAE)对脑缺血后海马神经元的保护作用及机制。将50只健康大鼠分为对照组、模型组、GLAE低(0.05 mg/(g·BW))、中(0.1 mg/(g·BW))、高(0.2 mg/(g·BW))剂量组。利用双侧颈总动脉夹闭法建立大鼠脑缺血模型,GLAE组灌胃不同剂量的GLAE干预,对照组和模型组灌胃同体积的生理盐水,连续2周。用跳台试验方法检测记忆获得、记忆巩固和记忆再现障碍大鼠的学习记忆能力,HE染色观察大鼠海马组织的病理形态的变化,比色法检测海马组织一氧化氮合酶(nitric oxide synthase,NOS)活性和一氧化氮(nitric oxide,NO)含量,Western blotting和实时荧光定量PCR法分别检测海马组织生长相关蛋白-43(growth associated protein-43,GAP-43)和脑源性神经生长因子(brain derived neurotrophic factor,BDNF)的水平。结果显示,与对照组相比,模型组大鼠跳台试验的逃避潜伏期显著缩短、电击次数显著增加(P<0.05);海马神经元细胞出现明显核固缩、排列松散紊乱等退行性改变,细胞数量显著减少(P<0.05);海马组织NOS活性和NO含量均显著降低(P<0.05);大鼠海马组织GAP-43蛋白表达量显著升高(P<0.05);海马组织BDNF mRNA表达量显著下调(P<0.05)。与模型组相比,GLAE干预后,大鼠逃避潜伏期均显著延长、电击次数均显著减少(P<0.05);GLAE高剂量组大鼠CA1区和齿状回锥体神经元细胞形态明显改善,神经元数量显著增加(P<0.05);GLAE低剂量组对NOS活性影响不明显(P>0.05),显著增加NO含量(P<0.05),GLAE中、高剂量组NOS活性和NO含量均显著升高(P<0.05);GLAE低、中、高剂量组海马组织GAP-43蛋白表达量均显著增加(P<0.05);GLAE低、中、高剂量组海马组织BDNF mRNA表达量均显著增加(P<0.05)。以上结果表明,GLAE可通过提高NOS活性和NO水平、促进海马神经发生和功能恢复对脑缺血后海马神经元损伤有一定的保护作用,从而改善大鼠认知功能,0.2 mg/g GLAE效果最好。  相似文献   

12.
Reactive oxygen species have been long associated with oxidative stress relevant to many pathological damages. In brain, 4-hydroxy-2E-nonenal (HNE), a major cytotoxic end product of lipid peroxidation, is produced. In contrast, superoxide dismutase (SOD), one of the major antioxidant enzymes, protects neurons from oxidative stress. The aim of this study is to observe differences in the distribution of HNE and Cu,Zn-superoxide dismutase (SOD1) in the hippocampal CA1 region of adult (2-3 years of age) and aged (10-12 years of age) dogs. The HNE immunoreactivity and protein level in the CA1 region were significantly high in the aged dogs compared to those in the adult dogs. SOD1 immunoreactivity and its protein level were also higher in the aged dogs than those in the adult dogs. However, there were not significant differences in NeuN (a neuron-specific soluble nuclear antigen) immunoreactivity in CA1 neurons between the adult and aged dogs. These differences may be associated with oxidative stress in aged dogs compared to that in adult dogs.  相似文献   

13.
Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.  相似文献   

14.
Over 100 free-ranging adult California sea lions (Zalophus californianus) and one Northern fur seal (Callorhinus ursinus), predominantly adult females, were intoxicated by domoic acid (DA) during three harmful algal blooms between 1998 and 2000 in central and northern California coastal waters. The vector prey item was Northern anchovy (Engraulis mordax) and the primary DA-producing algal diatom was Psuedonitzschia australis. Postmortem examination revealed gross and histologic findings that were distinctive and aided in diagnosis. A total of 109 sea lions were examined, dying between 1 day and 10 months after admission to a marine mammal rehabilitation center. Persistent seizures with obtundation were the main clinical findings. Frequent gross findings in animals dying acutely consisted of piriform lobe malacia, myocardial pallor, bronchopneumonia, and complications related to pregnancy. Gross findings in animals dying months after intoxication included bilateral hippocampal atrophy. Histologic observations implicated limbic system seizure injury consistent with excitotoxin exposure. Peracutely, there was microvesicular hydropic degeneration within the neuropil of the hippocampus, amygdala, pyriform lobe, and other limbic structures. Acutely, there was ischemic neuronal necrosis, particularly apparent in the granular cells of the dentate gyrus and the pyramidal cells within the hippocampus cornu ammonis (CA) sectors CA4, CA3, and CA1. Dentate granular cell necrosis has not been reported in human or experimental animal DA toxicity and may be unique to sea lions. Chronically, there was gliosis, mild nonsuppurative inflammation, and loss of laminar organization in affected areas.  相似文献   

15.
The effect of 60% resection of the large colon vs ischemic insult without resection on the ability of horses to digest grass hay was investigated. Digestion trials were performed on 9 horses before surgery (base line) and 3 weeks, 6 weeks, and 6 months after surgery. The percentage of apparent digestion of crude protein, crude fiber, nitrogen-free extract, calcium, phosphorus, magnesium, manganese, copper, and zinc was calculated. Horses that had resection (n = 5) had decreased apparent digestion of crude protein, crude fiber, and phosphorus 3 weeks after surgery, compared with those in horses with ischemic insults (n = 4) and with base-line values. Horses with ischemic insults also had a decrease in crude protein digestion 3 weeks after surgery, compared with base-line values. All horses returned to base-line values of digestion at the 6-month trials, although horses that had resection had higher fecal concentrations of phosphorus and nitrogen-free extract than did horses with ischemic insult. During the study, all horses had maintained good body condition.  相似文献   

16.
Perineuronal nets (PNs) of condensed extracellular matrix (ECM) have been shown to characterize the microenvironment of individual neurons and the chemoarchitecture of some brain regions. In the present study, PNs in the hippocampus were visualized with a cationic iron colloid method for sulphated proteoglycan content and a plant lectin from Vicia villosa agglutinin (VVA) for N-acetylgalactosamine containing glycoconjugates. The ECM molecules were organized in reticular coats (PNs) around non-pyramidal cells in the Ammons horn (Corneu Ammons, CA) and subicular region, in addition to pyramidal neurons located in CA2 and CA3 regions. CA2 stratum pyramidale exhibited the most intense staining of its PNs and a diffuse intervening neutrophil labelling, while CA3 region showed a graded fashion of staining intensity. The subiculum displayed intensely stained perineuronal coats. Notably, the hippocampal perineuronal nets revealed overlapped staining characteristics with both staining methods. However, cell coats of the subicular neurons showed various degrees of labelling characteristics with both markers. It is suggested that the PNs in the hippocampus are correlated with the fast spiking inhibitory GABAergic neurons and their target pyramidal cells, and this is important to keep the excitatory elements under control and therefore control the information processes within the hippocampus.  相似文献   

17.
大鼠短暂性全脑缺血再灌注后海马神经元动态变化   总被引:2,自引:0,他引:2  
采用股动脉放血并双侧颈总动脉夹闭制作大鼠全脑缺血再灌注模型,分别于术后6h、1d、3d、5d处死动物,取脑,制作石蜡切片和冰冻切片,通过HE染色、TUNEL检测及Caspase-3活性测定,对大鼠海马各区锥体细胞形态进行动态观察。结果表明:在短暂性全脑缺血中,海马锥体细胞存在着凋亡和坏死两种死亡形式,细胞凋亡在海马各区中的分布是一动态过程,各区对缺血易损伤性的顺序是:CA1及门区>CA2>CA3>齿状回;脑缺血再灌注不同时间,海马锥体细胞中DNA断裂及Caspase-3的表达与细胞凋亡呈现相似的变化趋势,且DNA的断裂早于Caspase-3的表达;与青年组相比,老年组海马神经元出现凋亡时间早且损伤严重。试验证明:在脑缺血再灌注损伤中,海马各区存在着缺血耐受性差异;细胞凋亡是神经元死亡的一种重要形式。  相似文献   

18.
用SABC免疫组织化学技术,观察家兔海马各区nNOS阳性神经元在去卵巢及雌激素替代治疗后的形态结构及分布变化,为雌激素类药物防治绝经后老年性痴呆症提供理论依据。结果表明,家兔海马各区都有nNOS阳性神经元分布;去卵巢后海马nNOS阳性神经元的形态结构及分布变化有区域差异性:与假手术对照组相比,在海马CA1区、CA3区、齿状回(DG)阳性神经元数量明显减少(P0.05),而在CA2区数量明显增多(P0.05)。CA1、CA3区和DG的阳性神经元胞体截面积明显变小,最长突起长度明显变短,第一级突起数变少,与假手术组有显著差异(P0.05)。CA2区阳性神经元胞体截面积明显变小(P0.05),最长突起长度、第一级突起数增多,但差异不显著(P0.05);nNOS阳性神经元的4种指标在雌激素替代治疗组与假手术组之间无显著差异(P0.05)。结果提示:雌激素可能通过影响海马nNOS的表达来影响脑的学习和记忆功能。  相似文献   

19.
In the present study, we investigated age-related changes in pituitary adenylate cyclase-activating polypeptide (PACAP) immunoreactivity and its protein levels in the gerbil hippocampus at various ages using immunohistochemistry and western blot analysis. In the post-natal month 1 (PM 1) group, PACAP-immunoreactive cells were found in all hippocampal subregions. The number of PACAP-immunoreactive cells was decreased in the PM 3 group and was still more decreased in the PM 6 and 12 groups. Thereafter, in the PM 18 and 24 groups, PACAP-immunoreactive cells were significantly increased again. However, in the mossy fibre zone, PACAP immunostaining was very strong in the adult group, especially in the PM 6 group. In addition, PACAP protein level was highest at PM 6, showing a slight decrease at PM 24. These results indicate that PACAP-immunoreactive cells are lowest in the adult stage and highest in the aged stage. However, PACAP immunoreactivity in the mossy fibre zone and PACAP protein level in the hippocampus are highest in the adult stage.  相似文献   

20.
In this study, we investigated changes in glutamic acid decarboxylase 67 (GAD67) immunoreactivity and its protein levels in the gerbil somatosensory cortex after ischemia/reperfusion. GAD67 immunoreactivity was significantly increased in layers III and V of the somatosensory cortex 12 hr after ischemia/reperfusion. Thereafter, GAD67 immunoreactivity was decreased with time after ischemia/reperfusion. GAD67 immunoreactivity in the somatosensory cortex 4 days after ischemia/reperfusion was similar to that in the sham-operated group. In addition, GAD67 protein levels were also significantly increased 12 hr after transient forebrain ischemia. These results suggest that the transient increase of GAD67 immunoreactivity in layers III and V may be associated with responses to transient ischemia-induced neuronal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号