首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
周麦32号是黄淮麦区通过审定的优质高产多抗型小麦新品种,为明确该品种的遗传基础,利用小麦55K SNP芯片在全基因组上对周麦32号及双亲矮抗58和周麦24号进行扫描分析。结果表明:矮抗58和周麦24号对周麦32号的遗传贡献率分别为73.75%和26.25%,不同染色体间亲本的遗传贡献率差异较大,在大多数染色体上,周麦32号的遗传物质更多地来源于矮抗58,而仅在1B、4B和6A染色体周麦24号的遗传贡献率超过矮抗58;在不同基因组水平上,矮抗58对周麦32号的遗传贡献率均高于周麦24号。亲本染色体遗传片段和标记基因注释分析也表明周麦32号继承了更多矮抗58的遗传物质,表现出明显的偏亲遗传。  相似文献   

2.
小麦骨干亲本矮孟牛及其衍生后代遗传解析   总被引:2,自引:1,他引:2  
【目的】探讨中国重要的小麦骨干亲本之一矮孟牛的遗传构成及其特异标记位点(染色体区段)在衍生后代中的传递频率和遗传贡献率。【方法】利用覆盖小麦全基因组的836个DArT标记对矮孟牛的3个亲本进行标记筛选,获得来自3个亲本的330个特异标记,并分析特异标记位点(染色体区段)在41份后代材料的遗传频率和遗传贡献率。【结果】亲本牛朱特的遗传物质对后代影响的覆盖涉及面最广,遗传贡献率最大,对后代衍生品种不同染色体的贡献率范围为21.5%(7A)-85.4%(5D),对A、B、D这3个基因组的贡献率分别为44.4%、51.8%和52.0%,对后代衍生品种(系)的遗传贡献率平均为52.2%,表明国外引进种质对中国的小麦遗传改良起到了重要作用。矮丰3号对后代衍生品种不同染色体的贡献率范围为12.2%(5D)-70.7%(2A),对A、B、D 3个基因组的贡献率分别为46.2%、44.0%和23.8%,对后代衍生品种(系)的遗传贡献率平均为43.2%;孟县201对后代衍生品种不同染色体的贡献率范围为14.0%(1D)-68.3%(6D),对A、B、D 3个基因组的贡献率分别为34.9%、35.9%和42.7%,对后代衍生品种(系)的遗传贡献率平均为35.4%。并鉴定出骨干亲本中一些对后代有较大贡献、高频率传递的染色体位点。【结论】本研究探明了矮孟牛中特异标记位点在衍生后代中的传递频率和遗传贡献率,鉴定出许多与小麦重要性状紧密连锁、对衍生后代具有重要贡献的染色体位点,为解析骨干亲本易出品种的遗传基础,更好地创造和利用骨干亲本,培育小麦新品种提供参考。  相似文献   

3.
高粱丝黑穗病菌4号生理小种抗性基因的定位   总被引:3,自引:1,他引:2  
【目的】对高粱的丝黑穗病菌4号生理小种抗性基因进行定位分析,筛选与抗病基因连锁的分子标记,为抗丝黑穗病育种奠定基础。【方法】以对高粱丝黑穗病菌1、2、3、4号生理小种均表现免疫的材料961541为母本,以对1、2、3号生理小种免疫、对4号生理小种感病的材料V4B及高感材料PI550607为父本,进行杂交,构建F2群体。采用菌土法在播种时进行田间接种,抽穗后对抗/感亲本、F1及F2群体材料进行发病率调查。利用微卫星分子标记技术(SSR)和分离群体分组分析法(BSA)对961541/V4B的F2群体进行抗病基因的定位分析。【结果】961541/V4B组合中,抗病亲本961541发病率为0,感病亲本V4B发病率为21.5%,F1发病率为0,F2群体发病率为7.25%;961541/PI550607组合中,高感亲本PI550607的发病率为64.81%,F1及F2群体发病率分别为0和5%。适合性检验表明,2个组合的F2群体的抗、感病株比率均符合15﹕1(χ2=0.201、0.322,P>0.05),4号生理小种的抗病性受2对非等位基因控制。所试274对SSR引物中共有53对引物在抗、感亲本间存在差异。利用筛选出的53对引物进一步对抗、感池进行特异引物筛选,仅位于高粱第1染色体上的SSR引物Xtxp325在抗、感池间表现差异。其中,抗池与免疫材料961541的带型一致,感池与鉴别寄主V4B的带型一致;选取5对引物(Xtxp325、Xtxp302、Xtxp32、Xtxp340和Xtxp248)进行连锁图谱构建,构建的连锁图谱全长355.3 cM,4号生理小种抗性基因Shs1与Xtxp325之间的遗传距离为27.7 cM。【结论】高粱丝黑穗病菌4号生理小种的抗病性受2对非等位基因控制。构建的连锁图谱全长355.3 cM,与发表的连锁图谱有较好的对应关系,高粱丝黑穗病菌4号生理小种抗病基因位于第1染色体上,Shs1与Xtxp325的遗传距离为27.7 cM。  相似文献   

4.
【目的】小麦中的脂肪氧化酶(LOX)是影响小麦面粉颜色和其储藏特性的主要因素之一,对中国黄淮麦区的306份小麦种质资源进行脂肪氧化酶活性分析及等位基因检测,为小麦品质育种提供理论参考。【方法】利用紫外分光光度计和酶标仪测定参试样品的脂肪氧化酶(LOX)活性,并利用控制脂肪氧化酶活性的位于1AL上的QLpx.caas-1AL位点紧密连锁的分子标记Xwmc312以及位于4BS上的TaLOX-B1位点的功能标记LOX16LOX18,采用特异引物的PCR扩增技术以及琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳分离技术进行参试材料的LOX基因型鉴定。【结果】表型测定结果表明,参试的黄淮麦区小麦品种(系)中脂肪氧化酶活性的平均值为65.73 AU·min-1·g-1,标准差为13.54,变幅为27.09-99.55 AU·min-1·g-1,变异系数为20.6%。参试材料中小于40 AU·min-1·g-1和大于90 AU·min-1·g-1的小麦品种(系)分别为7个和8个,可作为对当前主栽小麦品种进行脂肪氧化酶活性改良的重要资源材料。基因型鉴定结果表明,参试材料的QLpx.caas-1AL位点存在3种等位变异类型,Xwmc312227Xwmc312235Xwmc312247所占比例分别为30.4%、18.9%和50.6%。参试材料的TaLOX-B1位点存在TaLOX-B1aTaLOX-B1b两种变异类型,所占比例分别为 28.7%和71.2%。分析其基因型组合发现,参试材料中共有6种基因型组合类型,依次为TaLOX-B1a/Xwmc312227TaLOX-B1a/Xwmc312235TaLOX-B1a/Xwmc312247TaLOX-B1b/Xwmc312227TaLOX-B1b/Xwmc312235TaLOX-B1b/Xwmc312247,所占比例分别为7.2%、9.5%、12.1%、23.2%、9.5%和38.6%。分析不同LOX基因型与脂肪氧化酶活性的关系表明,1AL位点上拥有Xwmc312235基因型的小麦品种脂肪氧化酶活性显著高于其他两种基因型(P<0.05),4BS位点拥有TaLOX-B1a基因型的小麦品种脂肪氧化酶活性显著高于拥有TaLOX-B1b基因型的小麦品种(P<0.05)。进一步分析不同LOX基因型组合与脂肪氧化酶活性的关系表明,拥有TaLOX-B1a/Xwmc312235基因型组合的小麦品种脂肪氧化酶活性(76.80 AU·min-1·g-1)显著高于其他5种基因型组合,而拥有TaLOX-B1b/Xwmc312227基因型组合的小麦品种脂肪氧化酶活性显著低于其他5种基因型组合,仅为62.44 AU·min-1·g-1。【结论】中国黄淮麦区的小麦品种脂肪氧化酶活性绝大多数处于中间类型,拥有极低(小于40 AU·min-1·g-1)或极高(大于90 AU·min-1·g-1)脂肪氧化酶活性类型的小麦品种所占比例较低。黄淮麦区所发现的6种不同LOX基因型组合中,拥有TaLOX-B1a/Xwmc312235基因型组合的小麦品种脂肪氧化酶活性相对较高(P<0.05),而拥有TaLOX-B1b/Xwmc312227基因型组合的小麦品种脂肪氧化酶活性相对较低(P<0.05)。  相似文献   

5.
 【目的】利用高密度分子标记解析了周8425B衍生品种的遗传结构,并鉴定其携带的抗条锈病基因。【方法】利用921个DArT(Diversity Arrays Technology)标记和83个SSR标记分析周8425B及其50份衍生品种(系)间的遗传结构和遗传区段传递,并利用关联分析定位抗条锈病基因。【结果】周8425B及其衍生品种的遗传相似性平均为67.6%,聚类分析结果与品种系谱来源基本一致。周8425B对其衍生一代、二代和三代的平均遗传贡献率分别为67.7%、63.6%和58.8%,在A、B和D基因组间遗传贡献率分别为 68.7%、62.0%和 59.4%。周8425B 对其衍生品种的21条染色体贡献率变幅为44.9%—70.9%,其中,对4A染色体贡献率最低,为44.8%,对1D染色体贡献率最高,达79.0%。利用DArT和SSR标记与成株期抗条锈鉴定结果进行关联分析,发现4个条锈病抗性位点(P<0.01),其中2个条锈病抗性位点QYr.caas-2BL和QYr.caas-7BL与已报道的抗条锈病基因Yr7和YrZH84在相同染色体区段,另一个抗性位点QYr.caas-1BL与抗叶锈基因LrZH84位置相同,推测该位点与LrZH84紧密连锁或者一因多效。在3A染色体长臂末端发现一个条锈病抗性位点QYr.caas-3AL,与标记wPt-0398关联,可能是一个新基因,能解释22.9%的表型变异。【结论】骨干亲本对衍生后代在基因组和染色体水平上的贡献率主要与重要基因遗传传递有关,衍生品种携带的4个抗条锈病基因均来自骨干亲本周8425B,这些抗性基因及其它优异基因将在黄淮冬麦区南片品种遗传改良中继续发挥重要作用。  相似文献   

6.
扬麦系列品种品质性状相关基因的分子检测   总被引:1,自引:1,他引:0  
【目的】明确扬麦系列品种品质基因分布,为遗传育种和生产上应用扬麦品种提供参考。【方法】以21份扬麦系列品种的单系纯种为材料。采用SKCS-4100型单粒谷物特性测定仪测定籽粒硬度。采用功能性标记和聚丙烯酰胺凝胶电泳分离技术对硬度、低分子量谷蛋白亚基(LMW-GS)、编码直链淀粉合成关键酶的Wx、多酚氧化酶(PPO)、黄色素含量(PSY)和穗发芽抗性(Vp1)基因进行鉴定,利用SDS-PAGE蛋白质电泳技术对高分子量谷蛋白亚基(HMW-GS)和Wx蛋白亚基进行鉴定分析。【结果】籽粒硬度分析表明21份扬麦系列品种材料中,软麦有16份,频率为76.19%,而硬麦和混合麦仅为19.05%和4.76%。分子检测表明硬麦和混合麦材料中有4份为pinb-D1b硬度基因突变,频率为供试材料的19.05%,其硬度指数均在60左右;16份软麦材料中未发现pinb-D1b硬度基因突变。HMW-GS分布情况为:Glu-A1位点1和Null频率分别为38.10%和61.90%,Glu-B1位点7+8和7+9频率分别为57.14%和42.86%,Glu-D1位点2+12和5+10频率分别为85.71%和14.29%。LMW-GS以“Glu-A3c,Glu-B3g”基因型为主,Glu-A3位点Glu-A3cGlu-A3d基因型频率分别为90.48%和9.52%,Glu-B3位点Glu-B3gGlu-B3i基因型频率分别为95.24%和4.76%。Wx分子检测表明仅扬麦13为Wx-B1b突变型;Wx蛋白电泳分析表明仅扬麦13和扬麦5号Wx-B1位点蛋白亚基缺失。2AL位点上高PPO活性基因型Ppo-A1a和低PPO活性基因型Ppo-A1b的频率分别为52.38%和42.86%,2DL位点低PPO活性基因型Ppo-D1频率为90.48%。高和低黄色素含量标记基因Psy-A1aPsy-A1b,频率分别为19.05%和80.95%。穗发芽抗性基因功能标记Vp1B3扩增出抗穗发芽Vp1Bc和感穗发芽Vp1Ba两种基因型,频率分别为90.48%和9.52%。【结论】扬麦系列品种多数为弱筋小麦,这与其pinb-D1位点为pinb-D1a、Glu-A1Glu-D1位点多为Null和2+12、Glu-A3多为c有关,可用作弱筋小麦育种的亲本;扬麦158和扬麦16等品种中筋品质优良,可能主要与其pinb-D1位点发生变异有关,在中筋品质改良中应加强pinb-D1位点变异的选择;扬麦1号、扬麦4号、扬麦5号、扬麦9号、扬麦18、扬麦19和扬麦22携有低PPO活性和低黄色素含量基因,可用作改良面粉白度和色泽的亲本;扬麦2号、扬麦4号和扬麦5号Glu-D1位点为“5+10”亚基,扬麦13和扬麦5号Wx-B1蛋白缺失,为扬麦系列品种中少有的优质性状,可用于改良中筋小麦的蛋白质和淀粉品质。  相似文献   

7.
利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析   总被引:1,自引:0,他引:1  
【目的】小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素--粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。【方法】利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。【结果】构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DArT标记216个、SSR标记27个,覆盖染色体总长度4 875.29 cM,标记间平均距离0.78 cM。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 cM。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17QGW4B-5QGW4B-2QGW6A-344QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%-33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09-2.97 g。【结论】构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 cM。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%-33%,可增加粒重效应值2.30-2.97 g。  相似文献   

8.
中国小麦品种兰天9号慢叶锈性QTL分析   总被引:1,自引:0,他引:1  
【目的】由小麦叶锈菌(Puccinia triticina)引起的小麦叶锈病是影响小麦稳产、高产的一种重要真菌病害。目前防治小麦叶锈病最经济、安全、有效的方法是种植抗病品种。中国小麦品种兰天9号苗期对大多数叶锈菌小种表现感病,成株期对小麦叶锈菌则表现为明显的慢锈性。研究旨在分析中国小麦品种兰天9号的成株抗叶锈性,发掘其中含有的QTL,并利用分子标记进行定位,为小麦分子育种提供理论基础。【方法】利用抗病亲本兰天9号和感病亲本辉县红杂交获得到197个家系的F2:3群体,2011-2014年连续3年在河北保定种植,并利用3个叶锈菌生理小种混合菌种(THTT、THTS、THTQ)进行田间接菌,小麦成株期调查最终发病严重度,获得表型数据。利用1 232对SSR标记对兰天9号、辉县红以及F2:3群体进行基因检测,获得基因型数据。结合表型数据和基因型数据,利用Map Manager QTXb20创建连锁图、QTL Icimapping 3.2软件进行抗叶锈病QTL分析。【结果】检测到5个QTL,其中位于2B染色体上的QTL暂命名为QLr.hbau-2BS,在连续两年的数据结果中都被检测到,解释的遗传变异分别为6.0%和9.1%;标记区间分别为Xbarc55-Xgwm148Xgwm429-Xwmc154;LOD值分别为2.6和3.46;加性效应分别为-6.1和-8.7;显性效应分别为3.03和3.4。1B染色体上1个QTL暂命名为QLr.hbau-1BL.2,连续两年被检测到,解释的遗传变异分别为7.7%和10.7%;标记区间为Xwmc766-Xbarc269;LOD值分别为2.5和3.1;加性效应分别为-1.0和-1.1;显性效应分别为-13.0和-14.9。其他3个QTL只在一个年份被检测到,1B染色体上暂命名为QLr.hbau-1BL.1、4B上暂命名为QLr.hbau-4BS、3A上暂命名为QLr.hbau-3A,均在2011-2012年度检测到,解释的遗传变异分别为11.7%、8.5%、5.6%;标记区间分别为Xbarc80-Xwmc728Xgwm495-Xwmc652Xgwm161-Xbarc86;LOD值分别为5.1、4.0和2.8;加性效应分别为6.5、-5.5和-3.1;显性效应分别为-6.5、6.2和6.6。QLr.hbau-1BL.1来源于感病亲本辉县红,其余4个QTL来源于兰天9号。【结论】结合田间表型数据和基因型数据,检测到位于1B、2B、3A、4B染色体上5个控制成株抗叶锈的QTL。  相似文献   

9.
小麦新品种淮麦33的遗传构成分析   总被引:3,自引:2,他引:1  
【目的】解析高产广适小麦新品种淮麦33的遗传构成,探讨双亲烟农19和郑麦991对其产量相关性状的遗传贡献,为小麦品种改良及亲本选配提供依据。【方法】利用部分农艺及品质性状、高分子量谷蛋白亚基组成及覆盖小麦21条染色体的625个SSR分子标记分析淮麦33及其双亲的遗传构成;比对已知的产量性状相关QTL,分析双亲的产量相关区段对淮麦33的遗传贡献。【结果】淮麦33的每平方米穗数和千粒重均介于两亲本之间,穗粒数和小区产量均显著高于两亲本;与烟农19相比,其株高显著降低。淮麦33的高分子量谷蛋白亚基组成为(1、17+18和2+12),其中1和17+18亚基均来自于母本烟农19,2+12亚基来自于父本郑麦991。SSR分子标记分析表明,双亲对淮麦33的遗传贡献和理论值相比出现了较大偏离,淮麦33分别继承了烟农19和郑麦991两亲本73.9%和26.1%的遗传物质。淮麦33与烟农19具有较大的遗传相似度,遗传相似系数为0.78。在不同基因组和染色体水平上,双亲对淮麦33的遗传贡献率差异较大,其中,烟农19在A、B和D基因组水平的遗传贡献率均较高,分别为75.1%、69.4%和68.7%;除6A染色体外,烟农19在其他20条染色体上的遗传贡献率均高于郑麦991,其中在2A染色体上达到100%,在1A、3A、2B、3B和4B等5条染色体上均超过90%。在遗传距离大于5 c M的染色体区段中,淮麦33来源于烟农19和郑麦991的染色体区段分别有34个和7个,其中在2D染色体上来源于烟农19的染色体区段最多,在5A染色体上来源于郑麦991的区段最多。淮麦33有38个不同于双亲的特异位点,主要分布在1B、1D、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6B、6D和7A等15条染色体上。比对已知产量性状相关QTL,共发现10个产量相关区段,有6个来源于烟农19,分别位于1A、2D、3B、4B、4D和7A染色体上;3个来源于郑麦991,分别位于4A和5A染色体上;1个为淮麦33特异区段,位于6D染色体上。【结论】明确了小麦新品种淮麦33的遗传构成,其更多地继承了母本烟农19的遗传物质;发现淮麦33中来源于不同亲本的产量相关区段。  相似文献   

10.
【目的】水稻顶部小穗退化减少了单穗的总枝梗数和总粒数,严重影响单株产量,是水稻生产上的一个不利性状。因其遗传基础复杂,受环境影响较大,控制顶部小穗退化的相关基因克隆研究报道极少,该不利性状发生的分子机制及其遗传网络还不得而知。对顶部小穗退化基因进行精细定位,可为穗顶部基因的克隆奠定基础;开发的紧密连锁分子标记,也可以运用于分子育种实践,对这一不利性状进行早期识别和淘汰。【方法】首先对小穗突变体sp进行精细定位。用sp分别与粳稻品种ITA182和籼稻品种J160杂交构建2个遗传定位群体。为了研究不同穗退化突变体之间的关系,再以小穗突变体sp和穗顶部退化材料05261杂交,获得了农艺性状稳定的拟双突变体(表型与sp相似)。通过连续自交,纯合拟双突变体的遗传背景。再以高代的拟双突变体为非轮回亲本,穗顶部正常品种IRAT129为轮回亲本,构建含有双突变体的BC1F2亚群体。其中一个亚群体14C2017既表现单基因的穗退化性状分离,又出现小穗和穗顶部退化的双突变体表型,被用作顶部小穗退化基因的精细定位材料。【结果】水稻小穗性状是由1对隐性基因(sp)控制的。利用混池方法将SP(t)初步定位于第11染色体分子标记RM26281RM7391之间;利用新开发的60对SSR分子标记,将其定位在标记sc50sc66之间。在此区间内设计引物,最终将SP(t)定位在标记sc24sc66之间,物理距离为54.3 kb的范围内。测序结果表明,突变体在该区间内有15.03 kb的大片段缺失,导致基因SP1的编码序列缺失。对拟双突变体的表型分析表明,sp与一个穗顶部退化基因存在互作。利用亚群体14C2017作为克隆与SP1互作基因的遗传分离群体,利用分布于全基因组的239对引物,筛选出在拟双突变体和IRAT129之间有多态的引物114对,将目标基因精细定位于第3染色体SSR标记RM6929RM1319之间,物理距离为97.3 kb范围内,该候选基因属于早先报道的QTL--qPAA3。【结论】水稻sp的小穗性状是由基因SP1引起的缺失突变。与SP1互作的qPAA3定位于第3染色体SSR标记RM6929RM1319之间,物理距离为97.3 kb的范围内。  相似文献   

11.
[目的]对高抗条锈病的簇毛麦易位系V9125-2进行研究,明确其抗病性遗传特点,并对其抗条锈病基因定位,为选育优质抗源材料提供依据.[方法]采用中国当前流行的7个条锈菌生理小种CYR29、CYR30、CYR31、CYR32、CYR33以及Su11-4、Su11-11对簇毛麦易位系V9125-2和铭贤169的杂交后代进行...  相似文献   

12.
【目的】通过对小麦重组自交系群体光温生产效率的分析,阐明小麦光温生产效率的遗传特点与生物学性状的关系,为高光温生产效率小麦品种的选育提供理论依据。【方法】利用重组自交系群体(RIL),通过相关分析,检测高光温生产效率及其相关位点,并利用分子标记辅助选育高光温生产效率小麦新品系。【结果】小麦的光温生产效率与单株成穗数、穗粒数、平均灌浆速率、最大灌浆速率呈高度正相关,其中成穗数对小麦的光温生产效率贡献最大。光能生产效率受平均灌浆速率影响较大,而温度生产效率受最大灌浆速率影响较大。11个位点与光温生产效率相关,其中4个位点的贡献率在10%以上,分别为Xwmc167-2D、Xcwm23-2D、Xbarc218-3A和Xwmc326-3B。通过分子标记筛选到5个高光温效率的新品系,并且进行了验证。【结论】高光温效率小麦品种能很好地利用低温阶段的光温资源,形成较多分蘖,提高单株穗数和穗粒数。因而,在小麦新品种培育过程中,注重筛选单株成穗数多、穗粒数多和灌浆速度快的株系有利于提高小麦的光温生产效率和高产、稳产。利用同一群体可以将QTL分析与新品种选育相结合,是分子标记辅助选择的一条有效途径。  相似文献   

13.
【目的】小麦品系西农1163-4高抗小麦叶锈、条锈和白粉病,综合农艺性状良好。明确该小麦品系中所含的抗叶锈病基因及遗传特点,找到与其紧密连锁的分子标记,有利于抗病基因利用和培育抗病新品种。【方法】将西农1163-4与感病品种Thatcher杂交,获得F1、F2代群体,利用中国叶锈菌优势小种THTT进行苗期抗性鉴定和抗性遗传分析;采用SSR技术对西农1163-4所携带的抗叶锈基因进行分子标记研究,共筛选了1 273对SSR引物。【结果】小麦品系西农1163-4对多个叶锈菌小种具有良好的抗病性,对THTT的抗性是由1个显性基因控制,该基因暂命名为LrXi。获得了与LrXi紧密连锁的3个微卫星分子标记Xbarc8、Xgwm582、Xwmc269和1个STS标记(ω-secali/Glu-B3),将LrXi定位于小麦1BL染色体上。距离最近的2个微卫星位点是Xgwm582、Xbarc8,与抗叶锈基因间的遗传距离分别为2.3 cM和3.2 cM。【结论】LrXi位于1BL染色体,抗叶锈表现不同于所有已知抗叶锈病基因,该基因的发现将有利于丰富中国抗叶锈病基因资源,为培育持久抗病品种奠定基础。  相似文献   

14.
小麦品系西农1163-4抗叶锈病基因的遗传分析和分子作图   总被引:1,自引:1,他引:1  
【目的】小麦品系西农1163-4高抗小麦叶锈、条锈和白粉病,综合农艺性状良好。明确该小麦品系中所含的抗叶锈病基因及遗传特点,找到与其紧密连锁的分子标记,有利于抗病基因利用和培育抗病新品种。【方法】将西农1163-4与感病品种Thatcher杂交,获得F1、F2代群体,利用中国叶锈菌优势小种THTT进行苗期抗性鉴定和抗性遗传分析;采用SSR技术对西农1163-4所携带的抗叶锈基因进行分子标记研究,共筛选了1 273对SSR引物。【结果】小麦品系西农1163-4对多个叶锈菌小种具有良好的抗病性,对THTT的抗性是由1个显性基因控制,该基因暂命名为LrXi。获得了与LrXi紧密连锁的3个微卫星分子标记Xbarc8、Xgwm582、Xwmc269和1个STS标记(ω-secali/Glu-B3),将LrXi定位于小麦1BL染色体上。距离最近的2个微卫星位点是Xgwm582、Xbarc8,与抗叶锈基因间的遗传距离分别为2.3 cM和3.2 cM。【结论】LrXi位于1BL染色体,抗叶锈表现不同于所有已知抗叶锈病基因,该基因的发现将有利于丰富中国抗叶锈病基因资源,为培育持久抗病品种奠定基础。  相似文献   

15.
小麦抗秆锈病基因Sr22的SSR新标记   总被引:2,自引:0,他引:2  
 【目的】利用微卫星技术筛选与Sr22紧密连锁的标记,从而应用于分子辅助育种选择与抗性种质基因检测分析。【方法】以抗秆锈病单基因系SWSr22与感病品种McN701为亲本杂交获得F1,单粒F1种子自交获得F2群体,选用中国流行小麦秆锈菌小种21C3CTH接种鉴定,进行遗传分析;利用分离群体集群分析法(BSA)对位于7A染色体的73对SSR引物进行多态性筛选,具有多态性的引物再通过SWSr22×McN701的F2抗感群体与F2﹕3家系的植株进行验证。【结果】该单基因系SWSr22对21C3CTH的抗性属于单位点显性遗传,并筛选到2对在亲本及F2抗感群体间揭示多态性的SSR引物Xwmc790和Xwmc633。通过对F2分离群体的分析表明,这2个标记与抗病基因Sr22紧密连锁,呈共显性,分布于该基因的同一侧,位于远着丝点处,与Sr22的遗传距离分别为2.8 cM和10.8 cM。【结论】这2个标记与抗病基因Sr22紧密连锁,经验证可用于小麦抗秆锈病分子标记辅助育种。  相似文献   

16.
【目的】基于农艺和籽粒品质性状及籽粒Fe、Zn含量相关分子标记对普通小麦及其亲缘种进行综合评价,筛选优异育种亲本,为宁夏小麦高产优质新品种培育提供优异育种亲本。【方法】以国内外103份普通小麦及其亲缘种为材料,利用变异分析、相关分析、主成分分析、二维排序等方法对其9个农艺性状和9个籽粒品质性状进行评价,并对Fe、Zn含...  相似文献   

17.
 【目的】分析面团吹泡特性的遗传基础。【方法】以小麦品种花培3号、豫麦57构建的DH群体的168个株系为材料,利用含有323个位点的分子遗传图谱和3个环境的表型数据,对面团韧性(P)、延展性(L)、面团强度(W)、面团膨胀系数(G)和弹性指数(Ie)等5个吹泡性状进行QTL定位分析。【结果】共检测到17个加性效应位点和7对上位效应位点,分别位于1B、2B、3B、4B、1D、7D和5A染色体上。4B染色体Xwmc48—Xbarc1096区段上,同时检测到控制面团韧性(P)、延展性(L)和吹泡膨胀系数(G)的QTL位点(QDten4B、QDext4B和QSin4B),但遗传效应方向不同。在1D染色体Xwmc93—GluD1区段,检测到控制面团膨胀系数(G)、面团强度(W)和弹性指数(Ie)的位点,分别为QSin1D、QDstren1D和QEin1D,遗传贡献率分别为3.19%、17.74%和28.28%,且遗传效应方向相同,增效等位基因均来源于豫麦57。7对上位性效应遗传贡献率较小,无环境互作效应。【结论】小麦面团吹泡品质相关性状的遗传主要受加性效应控制,同时也受上位性效应控制。在某些染色体区段存在着影响不同吹泡性状的共同QTL,表现出一因多效或紧密连锁。  相似文献   

18.
【目的】研究可用于小麦品种特异性和一致性鉴定的SSR分子标记特点,筛选出适合河南省小麦品种DUS测定的SSR分子标记。【方法】以18份来源于河南省小麦骨干品种周麦13和周麦16亲缘关系较近的小麦品种为试验材料,选用252对SSR标记进行筛选,分析可用于小麦品种特异性和一致性鉴定的SSR分子标记的特点,对鉴别力较高的标记进行稳定性分析,进而确定出可用于河南省小麦品种DUS测定的骨干引物,并以10份来源于周麦13和周麦16亲缘关系较近的高代品系和41份河南省60年以来的大面积推广品种对骨干引物分辨能力作进一步验证。【结果】SSR分子标记对品种的鉴别力与多态位点数之间存在着极显著的正相关,从252对引物中得到6对特异性和一致性测定表现较好的骨干引物:Xwmc679、Xwmc574、Xgwm497、Xwmc388、Xwmc500、Xgwm637,利用这6对SSR引物可以将本试验所采用的69份小麦材料区别开。【结论】SSR分子标记对品种的鉴别力与多态位点数之间存在着极显著的正相关,Xwmc679、Xwmc574、Xgwm497、Xwmc388、Xwmc500和Xgwm637这6对引物具有较好的品种鉴别力和稳定性,可用于河南省小麦品种特异性和一致性鉴定。  相似文献   

19.
小麦白粉病抗病新基因PmHNK的遗传分析和分子标记定位   总被引:2,自引:0,他引:2  
 【目的】周98165对河南省当前流行白粉菌生理小种具有较好的抗性,并且综合农艺性状优良。明确其抗白粉病基因及遗传特性,筛选与其紧密连锁的分子标记,为抗白粉病育种提供抗源和理论支撑。【方法】将周 98165与中国春杂交、自交、测交,对双亲及其杂交后代进行苗期鉴定,用小麦白粉病菌08B1进行遗传分析,利用SSR、EST-SSR技术对双亲及抗感池进行筛选和电泳分析,并结合中国春缺四体材料进行染色体定位。【结果】周98165对3个白粉菌高毒力小种抗性良好,其抗病性受1对显性核基因控制,将该基因暂命名为PmHNK。筛选了与PmHNK 连锁的5个微卫星标记,在遗传图谱上的顺序为Xbarc77、Xgwm547、Xwmc326、Xgwm299、PmHNK、Xgwm108,Xgwm299和Xgwm108分别为PmHNK两侧距离最近的标记,图距分别为4.2 cM、5.6 cM,最远标记Xbarc77与PmHNK图距为10.6 cM,并将PmHNK 定位于3BL。【结论】抗病鉴定、遗传分析结合分子标记分析结果表明,PmHNK是一个白粉病抗病新基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号