首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
基于AquaCrop模型的北京地区冬小麦水分利用效率   总被引:3,自引:0,他引:3  
【目的】作物水分利用效率(water use efficiency,WUE)是农业水分管理与决策的重要指标。北京是严重缺水的城市,其主要种植作物冬小麦灌溉用水占比高,开展冬小麦产量水分利用效率的分析研究,可为北京地区的冬小麦节水灌溉与增产平衡提供决策信息支持。【方法】利用2011—2012、2012—2013和2013—2014年国家精准农业示范研究基地冬小麦不同生育期不同灌溉处理下的田间实测数据,对AquaCrop作物模型进行参数本地化。统计北京地区2004—2014年冬小麦生育期的日降雨量数据,利用Pearson-Ⅲ型分布划分了3种降雨年型:湿润年(2012—2013年生育期)、平水年(2009—2010年生育期)和干旱年(2005—2006年生育期)。应用AquaCrop研究分析了3种不同降雨年型、14种灌溉情景下冬小麦籽粒产量水平和产量水分利用效率特征变化。【结果】基于AquaCrop模型的产量模拟值和实测值的R 2、RMSE和d分别为0.99、0.3 t·hm~(-2)、0.99。模型模拟的冬小麦产量水分利用效率:2011—2012年正常灌溉条件下为1.72 kg·m~(-3),2012—2013年正常灌溉条件下为1.67 kg·m~(-3),2013—2014年雨养、正常灌溉和过量灌溉条件下分别为1.27、1.74和1.64 kg·m~(-3),正常灌溉条件下产量水分利用效率最高,其次是过量灌溉,雨养条件下产量水分利用效率最低。在此基础上应用AquaCrop模型模拟分析了3种不同降雨年型冬小麦籽粒产量和产量水分利用效率随灌溉量变化的响应特征,其中,湿润年产量水分利用效率和籽粒产量达到最大值时所需的灌溉量分别为35和50 mm;平水年达到最大值所需的灌溉量分别为35和40 mm;干旱年达到最大值所需的灌溉量均为65 mm。【结论】AquaCrop模型可以很好预测北京地区不同年份不同灌溉条件下冬小麦的籽粒产量和产量水分利用效率。冬小麦产量与产量水分利用效率均随着灌溉量的增加逐渐增大,至最大值后开始减小,在干旱的情况下,植物通过自身适应策略会提高水分利用效率,随着水分的增加,水分利用率将降低,因此3种不同年型的产量水分利用效率的大小顺序依次为干旱年、平水年和湿润年。因此,在制定冬小麦灌溉策略时,要做到产量和产量水分利用效率兼顾。以上研究结果表明,利用Aqua Crop模型可以为北京地区冬小麦田间灌溉和决策提供指导。关于降雨年型本研究仅对湿润年、平水年和干旱年3种年型在越冬期、返青期、拔节期、开花期和灌浆期不同灌溉量和籽粒产量和产量水分利用效率之间的关系进行模拟,对于不同时期不同灌溉量对籽粒产量和产量水分利用效率的影响没有考虑,需要进一步研究验证。  相似文献   

2.
【目的】通过评价AquaCrop模型对覆膜条件下冬小麦的生长发育、土壤水分、产量以及水分利用效率的模拟效果,为AquaCrop模型在覆膜条件下的校准和应用提供科学的方法和理论依据。【方法】试验设臵不覆盖(CK)和白色地膜覆盖(PM)两个处理,于2013年10月至2016年6月年在陕西杨凌进行田间试验,利用2014—2015年度试验数据对AquaCrop模型进行参数校准,利用2013—2014年度和2015—2016年度的冬小麦观测数据对AquaCrop模型进行验证。【结果】AquaCrop模型较好地模拟了冬小麦冠层覆盖度,冠层覆盖度模拟值和实测值之间的决定系数(R2)为0.86—0.99,均方根误差(RMSE)为2.1%—8.1%。AquaCrop模型也较好地模拟了冬小麦生物量和土壤贮水量,其中地上部生物量的模拟值和实测值之间的R2均大于0.95,RMSE为0.814—1.933 t·hm-2;CK土壤贮水量模拟值和实测值间的相关系数均大于0.85,PM土壤贮水量模拟值和实测值间的相关系数均大于0.75,CK和PM土壤贮水量模拟值和实测值的均方根误差表现为9.2 mmRMSE17.6 mm,标准均方根误差(NRMSE)小于5.5%。冬小麦产量实测值和模拟值相对误差(RE)为-4.4%—9.0%,PM产量实测值和模拟值的平均值较CK分别提高40.5%和40.3%,表现出较好的一致性,处理间成显著性差异。水分利用效率实测值和模拟值RE为-10.4%—-1.5%,PM水分利用效率实测值和模拟值的平均值较CK分别提高54.1%和47.5%,同样表现出较好的一致性,处理间成显著性差异。在冠层覆盖度、地上部生物量、产量和水分利用效率方面,模型模拟值和实测值的变化趋势基本一致,且PM模拟值和实测值间均较CK表现出显著性差异。【结论】AquaCrop模型能够较好地模拟覆膜条件下冬小麦生长发育过程,可以用于覆膜条件下作物生产力的模拟和预测,为AquaCrop模型的推广应用提供了可靠的数据支持。  相似文献   

3.
AquaCrop模型在北疆滴灌春小麦生产中的校准及验证   总被引:1,自引:0,他引:1  
为精确模拟干旱区不同灌溉制度下的小麦耗水量,进一步提高水分利用效率,在北疆春小麦生产中引进FAO推荐的AquaCrop作物水分生产力模型,基于实测资料对模型进行校验。结果表明,校准后的模型能够准确模拟北疆滴灌春小麦蒸散量,以此为基础得到的冠层覆盖度、地上部干生物量及籽粒产量具有良好的模拟精度。因此,在干旱区应用AquaCrop模型模拟滴灌春小麦蒸散量指导精准灌溉是可行的。  相似文献   

4.
基于AquaCrop模型的大豆灌溉制度优化研究   总被引:1,自引:0,他引:1  
王巧娟  何虹  李亮  张超  蔡焕杰 《中国农业科学》2022,55(17):3365-3379
【目的】 探究AquaCrop模型在关中地区的适用性,寻求大豆在不同降水年型下最适宜的灌溉制度。【方法】 用田间试验实测数据对该模型进行校正,并用校准后的模型模拟1961—2019年内所有3种不同降水年型14种灌溉制度下的大豆产量和水分利用效率。【结果】 AquaCrop模型模拟田间产量最高处理的冠层覆盖度的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.96、7.15%、11.03%和0.94;模拟值与实测值生物量的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.99、526.04 kg·hm-2、14.45%和0.97;最终产量模拟的决定系数(R 2)、均方根误差(RMSE)、标准均方根误差(NRMSE)及Nash效率系数(EF)分别为0.97、49.98 kg·hm-2、1.74%和0.82,各处理的冠层覆盖度和生物量实测值与模拟值的R 2均大于0.95,说明AquaCrop模型可以较好地模拟关中地区大豆的生长发育动态与产量。结合模型模拟结果可知,大豆作物需水量平均值为398.2 mm,各个生育时期的需水量差异较大,分枝期需水量为127.8 mm,开花-结荚期需水量为212.6 mm,鼓粒期的需水量为57.7 mm。结合对3种不同降水年型进行不同灌溉制度模拟后发现,大豆开花-结荚期为需水关键期,该生育时期水分供应情况影响大豆的最终产量。在湿润年可以不灌水;平水年和干旱年仅在开花-结荚期分别灌溉45和70 mm可实现最高产量(2 699、2 486 kg·hm-2)和最大水分利用效率(0.74、0.7 kg·m-3)。【结论】 该地区大豆灌溉制度,应以不同降水年型分布情况为基础对大豆灌溉制度进行选择,可保证大豆具有较高的产量和水分利用效率,可作为关中地区大豆灌溉制度的参考依据。  相似文献   

5.
为评估AquaCrop模型在黑龙港流域模拟冬小麦-夏玉米水分利用与作物产量的适用性,根据田间试验数据和FAO提供的参数值,对AquaCrop模型进行模型非保守性参数的本地化校准和验证。结果表明,AquaCrop模拟冬小麦冠层覆盖值和实测值的归一化均方根误差(NRMSE)为15.90%,模拟产量与实测产量之间的NRMSE为4.23%;模拟夏玉米冠层覆盖值和产量值与相应实测值之间的NRMSE分别为11.59%和11.69%。本研究校准所得参数对黑龙港流域典型站点有较好的适应性,校验后的AquaCrop可以用于黑龙港流域冬小麦-夏玉米水分管理、产量潜力等相关研究。  相似文献   

6.
为将AquaCrop模型应用于华北平原夏玉米水分研究中,于2011-2012年在中国科学院栾城农业生态系统试验站进行了夏玉米水分处理试验,在参数率定与模型验证的基础上对华北平原水量平衡及水分利用效率的现状进行了分析。结果表明,AquaCrop模型能够较好地模拟夏玉米的产量、生物量、冠层发育过程以及表层土壤水储量的动态变化。从生物量角度来看,夏玉米的水分利用效率在8月中旬达到最大,可达10 kg/m3左右,其整个生长季水分利用效率为4.9-5.8 kg/m3;从产量角度来看,水分利用效率为2.3-3.0 kg/m3,且在整个生长季土壤水储量呈增加趋势。研究阐明了AquaCrop模型在华北平原地区有较好的适用性,可以应用于夏玉米耗水与水分利用效率方面的研究。  相似文献   

7.
基于EFAST方法的AquaCrop作物模型参数全局敏感性分析   总被引:9,自引:0,他引:9  
【目的】敏感性分析是作物模型本地化过程中的重要环节,对作物模型的校正与应用有重要的意义。【方法】本研究以国家精准农业示范研究基地2012—2013、2013—2014和2014—2015年冬小麦试验为研究对象,采用全局敏感性分析方法扩展傅里叶幅度检验法(Extended Fourier Amplitude Sensitivity Test,EFAST)对AquaCrop模型42个作物参数进行敏感性分析,以评估模型在北京地区的敏感参数。【结果】(1)对干生物量敏感作物参数是:水分和温度胁迫参数(生物量生产的最小生长度(stbio),引起冠层早衰的土壤水分消耗上限(psen))、生物量和产量参数(归一化水分生产力(wp))、蒸散参数(作物冠层形成后到衰老之前的作物系数(kcb))、作物冠层和物候发展参数(冠层生长系数(cgc),从播种到出苗时长(eme),最大冠层覆盖度(mcc),冠层衰老系数(cdc),从播种到成熟的时长(mat),产量形成过程中收获指数的建立长度(hilen))。其中stbio,kcb,wp和cgc 4个作物参数敏感性指数最大;(2)对冠层覆盖度最敏感的参数是:作物冠层和物候发展参数(cgc,mcc,每公顷株数(den),出苗率达到90%时的土壤覆盖度(ccs),mat和cdc)、根区发展参数(最大有效根深(rtx))、水分和温度胁迫参数(psen)、蒸散参数(kcb);(3)对产量最敏感的参数是作物冠层和物候发展参数(从播种到开花时长(flo),mat,cdc,hilen和从播种到开始衰老时长(sen))、水分和温度胁迫参数(psen)、生物量和产量参数(参考收获指数(hi)和wp)、蒸散参数(kcb)。【结论】利用EFAST方法对AquaCrop模型中的作物参数进行一阶和全局敏感分析,最大干物量的敏感性分析结果以及干生物量随时间变化的敏感性分析结果显示,敏感性参数的选择上差异不大,但排序上存在较大的差异,最大干生物量的敏感性分析不能分析作物参数对干生物量在整个生育期的影响,结果不全面;冠层覆盖度随时间变化的一阶和全局敏感性分析结果显示,在敏感参数的选择和排序上均有较好的一致性,全局敏感性分析中作物参数的敏感性指数更高,对冠层覆盖度的影响表现得更明显。本研究结果用于AquaCrop模型本地化,可提高该模型在北京地区的模拟效率和模拟精度。  相似文献   

8.
以河北曲周为例,利用AquaCrop模型和指标评价法,建立了粮食作物生长环境要素(气象、土壤等)与产量之间的定量关系,并评价了地膜覆盖和育苗移栽技术下作物(冬小麦、夏玉米)对水热资源的利用效率。结果表明:1)AquaCrop模型能较好地模拟作物(冬小麦、夏玉米)的冠层覆盖度、生物量和产量,并能分析作物种植技术对水热资源利用效率的影响;2)地膜覆盖和育苗移栽技术显著影响作物(冬小麦、夏玉米)在播种-拔节时期的水热资源利用效率;3)冬小麦地膜覆盖和夏玉米育苗移栽技术的水热资源利用效率分别提高0.67和0.50,产量分别增加326和972kg/hm2。说明冬小麦地膜覆盖和夏玉米育苗移栽技术可以影响作物在关键生育期内对水热资源的利用以及提高作物的产量。本研究旨在为其他作物效率和理论潜力的提升提供技术支撑,研究结果可作为冬小麦和夏玉米因干旱、冻害以及播种不及时等原因受灾的一种补救技术,为曲周地区的作物种植技术调整提供参考。  相似文献   

9.
通过评价AquaCrop模型对马铃薯的生长发育、土壤水分动态变化、产量及水分利用效率的模拟效果,为AquaCrop模型在宁夏中部干旱带马铃薯种植的应用提供科学方法和理论依据。试验设置5d、7d、10 d、13 d和15 d共5个灌水周期,于2018年在宁夏中部干旱带进行田间试验,对马铃薯冠层覆盖度、地上生物量、土壤储水量、产量及其构成指标进行测定。结果表明,AquaCrop模型可较好地模拟马铃薯冠层覆盖度的变化、地上生物量和土壤储水量,其实测值和模拟值的相对误差(RE)为0.06%~7.51%、0.95%~13.33%和0.15%~4.35%,均方根误差(RMSE)为1.04%~3.36%、0.092~0.335 t/hm~2、1.68~4.1mm;马铃薯产量实测值和模拟值RE为0.10%~2.22%,RMSE为294.45 kg/hm~2,腾发量和水分利用效率等指标的模拟也有类似的结果,表现出较好的一致性,但AquaCrop模型在灌水量较大或者较小时对各指标的模拟效果较差。总体来看,AquaCrop模型对各指标的模拟结果均较好,其结果可作为马铃薯适宜生长区域划分及特定条件下产量的预测。  相似文献   

10.
以冬小麦石家庄8号为材料,对华北平原不同灌溉处理下应用CERES-Wheat模型模拟节水栽培冬小麦生育时期、产量与产量构成因素、生物量、土壤水分含量、土壤硝态氮含量和地上部吸氮量的效果进行了系统分析。结果表明:在节水及不灌溉条件下,CERES-Wheat模型对冬小麦生育时期、产量、生物量的模拟效果良好;在高水分灌溉条件下,模型对生育时期的模拟效果良好,对其他性状的模拟效果不够理想,并且模型过高估计了灌溉对产量的贡献率。该模型可以模拟不同灌溉处理土壤水分动态变化基本特征,但稳定性有待提高。模型对不同灌溉处理2m土体土壤硝态氮含量的模拟效果较好,对吸氮量的模拟效果较差。要提高模型的系统性精度,需要在模型机制上进一步改进。  相似文献   

11.
徐学欣  王东 《中国农业科学》2016,49(14):2675-2686
【目的】探明微喷补灌对冬小麦开花后旗叶衰老和光合特性、籽粒灌浆速率、产量和水分利用效率的影响,为小麦节水高产提供重要技术支持。【方法】于2011-2013年冬小麦生长季,选用高产冬小麦品种济麦22,设置全生育期不灌水(W0)、微喷补灌(W1)和传统畦灌(W2)处理,研究小麦开花后旗叶水势、超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性、叶绿素荧光参数、群体光合速率和籽粒灌浆速率等的差异。W1与W2处理的灌水时期一致,均于小麦拔节期和开花期各灌水1次。W1处理采用小麦专用微喷带(ZL201220356553.7)补充灌溉,灌水前测定土壤含水量。两年度小麦拔节期均设定0-140 cm土层土壤目标相对含水量为70%,第一年和第二年小麦开花期设定0-140 cm土层土壤目标相对含水量分别为70%和65%,根据灌水定额公式计算所需补灌水量。W2处理采用传统畦灌方式灌溉,改口成数为90%,即当水流前锋到达畦长长度的90%位置时停止灌水,用水表计量实际灌水量。W1与W2处理试验小区的规格一致,畦宽(左侧畦梗中心线至右侧畦梗中心线的垂直距离)2 m,畦梗宽0.4 m,畦长60 m,面积120 m2。小区间设1.0 m保护行。每小区等行距种植8行小麦,实际行距22.9 cm。W1处理的每个试验小区在自边行向内数第4行与第5行小麦之间沿小麦种植行向(畦长方向)铺设一条专用微喷带。微喷带进水端装有压力表、水表和闸阀,进水端水压设为0.02 MPa。灌溉水水源为井水,从水源至微喷带和畦田进水端采用PVC水龙带输水。畦灌的单宽流量为4.6-5.2 L·m-1·s-1。【结果】两年度微喷补灌处理在小麦拔节期和开花期的补灌水量分别为21.3-96.0 mm和29.0-38.5 mm,灌水分布均匀系数达87.9%-97.0%,不低于传统畦灌处理,而全生育期总灌水量比传统畦灌处理减少33.2-70.8 mm,节水21.0%-54.2%。微喷补灌处理开花后旗叶水势、SOD和CAT活性、丙二醛含量、旗叶最大光化学效率、实际光化学效率,及群体光合速率和籽粒灌浆速率、籽粒产量均与全生育期灌2水的传统畦灌处理无显著差异,但水分利用效率提高2.1-2.9 kg·hm-2·mm-1,达21.6-23.2 kg·hm-2·mm-1。【结论】小麦拔节期和开花期微喷补灌可以根据灌水前的降水量和土壤含水量状况及时调节补灌水量,并实施精确、均匀灌溉,适量供给小麦高产生理需水,挖掘出小麦节水的更大潜力。  相似文献   

12.
【目的】研究不同灌溉条件下一个春小麦重组自交系(RIL)冠层温度与产量性状的相关性,为抗旱高产春小麦品种选育和栽培提供参考。【方法】于2014~2016年,对春小麦重组自交系(RIL)群体的188个株系,在充分灌溉和有限灌溉条件下, 分析RIL群体的抽穗期、灌浆初期和灌浆中期的冠层温度与产量的关系。【结果】有限灌溉条件下,春小麦各个生育时期的冠层温度均极显著高于充分灌溉(P<0.01)。在同一灌溉条件下,不同生育期之间的冠层温度也存在极显著差异(P<0.01),且随着生育期的推进,冠层温度呈升高趋势。产量及大部分产量构成因素与各生育时期的冠层温度之间均呈负相关性。冠层温度和产量及其构成因素之间的负相关性由强到弱依次为产量、千粒重、穗粒数、单株粒重。在有限灌溉条件下,产量与各个时期的冠层温度具有明显的线性递减关系,且与灌浆中期的冠层温度具有最明显的线性关系,而在充分灌溉条件下,这种线性递减关系不明显。【结论】有限灌溉条件下,春小麦产量及产量构成因子与冠层温度具有明显负相关性,冠层温度可作为一个重要指标用于指导春小麦育种、栽培等生产实践。  相似文献   

13.
节水抗旱稻旱优113号的根系生长对土壤水分亏缺的响应   总被引:2,自引:0,他引:2  
【目的】揭示土壤水分亏缺条件下节水抗旱稻根系的形态和生理指标的变化规律,阐明其节水抗旱的特异性生理基础。【方法】2015和2016年利用盆栽试验,以节水抗旱稻旱优113号(HY113)和高产水稻扬两优6号(YLY6)为试验材料,通过设置淹灌(对照)和干旱(土壤水势-38 k Pa左右)处理,研究干旱对节水抗旱稻与高产水稻根系形态结构和生理指标的影响及其与地上部生物量积累的关系。【结果】与淹灌相比,干旱处理显著降低了两个水稻品种的地上、地下干物质积累量,同时显著降低了节水抗旱稻HY113的根冠比(由0.18降为0.12),高产水稻YLY6的根冠比无显著变化。干旱处理下,两个品种的水稻根系活力均显著增加,但HY113的增加幅度显著高于YLY6,乳熟期HY113在2015和2016两年的平均增幅为38.7%,而YLY6为22.8%,其中2015年乳熟期HY113的根系活力从86μg·g~(-1)·h~(-1)增加至174μg·g~(-1)·h~(-1)。干旱处理下,HY113和YLY6的根系吸收面积均显著减小,但HY113的减小幅度显著低于YLY6。与高产水稻YLY6相比,节水抗旱稻HY113的根数、根体积和根干重均较少,总干物质积累量较少,但其根系活力和根系有效吸收面积较大。【结论】节水抗旱稻HY113具有根量少,但根系吸收效率高的特点,其在缺水条件下能维持较高的根系活力和根系吸收面积;在遭遇水分亏缺时HY113可通过减小根冠比,使得更多的干物质留在地上部分以保证籽粒产量。  相似文献   

14.
【目的】测墒补灌是近年来研究的一种小麦节水灌溉新技术。论文旨在探索测墒补灌与施氮对冬小麦生长的影响,为该区节水、节氮提供依据。【方法】采用漫灌的方式设置测墒补灌和施氮两因素田间试验,补灌设置4个处理,于冬小麦拔节期、开花期依据0-40 cm土层土壤质量含水量进行测墒补灌,补灌至土壤田间持水量的50%(W1)、60%(W2)、70%(W3)、80%(W4)。施氮设置4个处理,不施氮(N0)、施纯氮180 kg·hm-2(N180)、240 kg·hm-2(N240)和300 kg·hm-2(N300)。在此处理下研究了测墒补灌和施氮对冬小麦产量及水分、氮素利用效率的影响。【结果】(1)各施氮处理下,补灌量的增加可增加冬小麦籽粒产量,当补灌量至土壤田间持水量的60%-80%范围内时,冬小麦籽粒的增产效应差异不显著。各补灌处理下,当施氮量超过240 kg·hm-2时籽粒产量无显著性变化。本试验条件下当补灌至土壤田间持水量的60%,施氮量为240 kg·hm-2时冬小麦籽粒产量达到最高,为8 104.6 kg·hm-2。(2)增加施氮量和补灌量均可显著增加麦田总耗水量,但当施氮量超过240 kg·hm-2时,施氮的提高效果不显著。补灌量的增加会显著增加麦田总耗水量,但当补灌至土壤田间持水量60%(W2)、70%(W3)时较补灌至80%(W4)处理显著降低耗水量,说明有利于节约灌水而获得较高产量。(3)相同施氮处理下,补灌量的增加可显著提高冬小麦水分利用效率,当补灌量增至土壤田间持水量的60%时,冬小麦水分利用效率达到最大值,为14.7 kg·hm-2·mm-1。相同补灌处理下,增施氮肥可显著提高冬小麦水分利用效率,但施氮量不宜超过240 kg·hm-2,否则将导致水分利用效率降低。(4)相同施氮处理下,应控制补灌量至土壤田间持水量的60%时冬小麦氮素干物质生产效率及氮素利用效率最高,为60.1 kg·kg-1、22.4 kg·kg-1。相同补灌处理下,施氮量应控制在240 kg·hm-2时可获得较高的氮素干物质利用效率及冬小麦氮素利用效率最高,为63.9 kg·kg-1、23.5 kg·kg-1。【结论】本试验条件下当施氮量为240 kg·hm-2、冬小麦拔节期、开花期补灌至土壤田间持水量的60%时冬小麦籽粒产量、水分利用效率、氮素干物质利用效率、氮素利用效率均最高,为最优的节水、节氮、高产组合,推荐其作为该区域适宜水、氮用量。  相似文献   

15.
基于开花期卫星遥感数据的大田小麦估产方法比较   总被引:4,自引:2,他引:2  
谭昌伟  杜颖  童璐  周健  罗明  颜伟伟  陈菲 《中国农业科学》2017,50(16):3101-3109
【目的】卫星遥感具有覆盖范围广、获取速度快、信息量大、动态性强等优势,能够及时准确地获取作物产量信息,反映作物产量空间变化趋势。遥感技术作物估产已成为现代农业生产中研究热点。通过改善遥感估产建模方法,以实现进一步提高大田作物遥感估产精度,为宏观了解不同区域作物产量形成情况及变化趋势提供直观、可靠的参考。【方法】论文结合2011—2012年江苏省大丰、兴化、姜堰、泰兴、仪征5个县区的定点观测试验,以国产卫星产品HJ-1A/1B影像为遥感数据,于小麦开花期开展大田定位观测区卫星遥感植被指数、关键生长指标与收获期单产间的定量分析。通过对产量与小麦生长指标以及植被指数进行定量关系分析,进一步增强遥感反演的机理性和重演性。将卫星遥感变量与小麦产量进行相关关系分析作为遥感估产的直接建模方法,间接建模方法则是选取与产量相关性较好的遥感变量以及与遥感变量相关性较好的主要苗情指标,利用筛选得到的敏感遥感变量,首先监测对应的小麦生长指标,结合该小麦生长指标与产量间的定量关系,进而建立间接估产模型,利用此模型进行小麦遥感间接估产。利用直接和间接建模方法,以相关性最高为原则,筛选估算产量的敏感卫星遥感变量。以2012年试验数据为建模样本,采用线性回归分析方法,分析小麦开花期苗情指标、产量与卫星遥感变量两两之间的相关性,分别构建以遥感植被指数为基础的大田小麦估产模型,与地面实测结果一起建立模型共同分析。以2011年试验数据为验证样本,选取评价指标拟合度(R2)和均方根误差(RMSE),对两类模型的估算精度进行验证和比较,以提高遥感反演的定量化水平和可信度。【结果】分别以差值植被指数(difference vegetation index,DVI)和比值植被指数(ratio vegetation index,RVI)为基础的单因子直接估产模型的均方根误差(root mean square error,RMSE)为918 kg·hm-2和1 399.5 kg·hm-2,以DVI和RVI遥感变量构建双变量估产模型的RMSE为1 036.5 kg·hm-2,以归一化植被指数(normalized difference vegetation index,NDVI)和叶片氮积累量为基础构建的间接估产模型的RMSE为805.5 kg·hm-2,说明开花期HJ-1A/1B影像估算小麦区域产量是可行的,且精度较高;经比较,以NDVI和叶片氮积累量为基础的间接估产模型精度明显高于直接估产模型,相较于DVI直接估产模型RMSE降低了112.5 kg·hm-2,相较于RVI直接估产模型RMSE降低了594 kg·hm-2,相较于双因子模型RMSE降低了231 kg·hm-2。【结论】国产卫星HJ-1A/B可以较好满足估测小麦产量要求,且利用间接方法建立作物遥感估产模型要好于直接方法,研究结果为利用遥感技术更为准确估算大田小麦产量提供了一种新的途径。  相似文献   

16.
水磷耦合对藜麦根系生长、生物量积累及产量的影响   总被引:5,自引:0,他引:5  
【目的】水肥是旱地农业作物高产的主要限制因素,研究水磷耦合对藜麦根系生长、生物量积累以及产量的影响,探明适合藜麦高产的水磷耦合配比,从而为旱地农业藜麦高产提供理论依据。【方法】以藜麦为研究对象,采用盆栽试验,对藜麦整个生长期进行不同灌水(W1、W2、W3分别按照土壤含水量为田间持水量的35%—45%、55%—65%、75%—85%),不同施磷(P0、P1、P2、P3分别为0、0.1、0.2、0.4 g P_2O_5·kg~(-1))耦合处理,测定藜麦根系形态和生理指标、生物量积累以及成熟期产量。【结果】(1)在相同灌水处理下,不同根系参数(根系表面积、根系总长度、最大根长、根系直径、根体积)均在P2(0.2 g P_2O_5·kg~(-1))水平下达到最大;在相同施磷水平下,根系最大根长与根系总长均在W2(土壤含水量为田间持水量的55%—65%)下达到最大,根系表面积在低磷水平(P0、P1)下,均表现为W2P0W3P0,W2P1W3P1,高磷水平(P2、P3)下,均表现为W2P2W3P2,W2P3W3P3,根系直径与根系体积均随着灌水量的增加逐渐增加;在重度干旱胁迫(W1)下,根系活力在P1(0.1 g P_2O_5·kg~(-1))水平下达到最大,其他灌水处理下,根系活力均在P2(0.2 g P_2O_5·kg~(-1))水平下达到最大。在3种灌水处理下,根系POD、SOD活性均在P2(0.2 g P_2O_5·kg~(-1))水平下达到最高,而根系MDA含量、可溶性糖与脯氨酸含量降到最低。(2)适宜的水磷耦合配比(W3P1、W3P2)有利于藜麦各营养器官生物量(茎重、叶重)的积累以及后期产量的形成,而根重、序重在W2P3组合最优。高水处理更有利于植株对茎、叶生物量的分配,低水处理有利于植株对根、序生物量的分配,在重度干旱胁迫(W1)下,高的施磷量(P2与P3)均显著提高了植株对根重与序重的生物量分配。(3)在3种灌水处理下,施磷量均在P2(0.2 g P_2O_5·kg~(-1))水平下有利于植株顶穗的形成。分枝数、穗数、单株粒重与千粒重均表现出低磷促进,高磷抑制的单峰曲线,均在P2(0.2 g P_2O_5·kg~(-1))水平达到峰值;各施磷水平下,单株粒重与千粒重均在正常灌水(W3)达到最大。【结论】适宜的施磷量P2(0.2 g P_2O_5·kg~(-1))可以促进藜麦根系生长,增大根系与土壤的接触面积,提高根系活力,增强根系抗氧化能力,从而提高藜麦的抗旱能力;适宜的水磷耦合配比(W3P2)有利于藜麦各营养器官生物量的积累以及后期产量的形成。  相似文献   

17.
水氮互作对冬油菜氮素吸收和土壤硝态氮分布的影响   总被引:1,自引:0,他引:1  
【目的】针对西北地区冬油菜蕾薹期干旱频发,农民大量灌溉和施氮导致的环境问题,探究西北地区冬油菜蕾薹期适宜的灌溉量和施氮量。【方法】通过2年田间试验,研究分析蕾薹期不同灌溉量(不灌溉(I0)、灌60 mm(I1)和灌120 mm(I2))和施氮量(不施氮(N0)、施氮80 kg·hm-2(N1)和施氮160 kg·hm-2(N2))下,地上部干物质量、籽粒产量、氮素吸收与分配、土壤硝态氮分布和氮素利用效率的差异,其中全生育期不施氮(不基施、不追施)和不灌溉为对照处理(CK)。【结果】蕾薹期灌溉或施氮能显著提高冬油菜的地上部干物质量、籽粒产量、产油量和氮素吸收量。土壤硝态氮峰值所在的土层深度随灌水量的增加而明显下移,且峰值随施氮量的增加而明显增加,表现出明显的淋洗趋势。I1N1处理的土壤硝态氮累积量与I0N0处理间不存在显著差异,但与I2N2相比,却显著降低41.9 kg·hm-2。I0、I1和I2处理土壤硝态氮主要分布在0-40、40-80和80-160 cm。2个冬油菜生长季,I2N1处理的籽粒产量和产油量均最大,平均为3 385和1 429 kg·hm-2;CK最小,平均为1 391和585 kg·hm-2。与I2N1相比,2012-2013年(干旱年)I1N1处理的籽粒产量显著降低,但产油量无显著差异;2013-2014年(平水年)二者的籽粒产量和产油量均不存在显著差异。2年I1N1处理平均籽粒产量和产油量分别为3 264和1 358 kg·hm-2,仅比I2N1降低3.6%和4.7%。I1N1处理的平均氮肥农学利用率比I2N1降低7.2%。【结论】为提高冬油菜籽粒产量和氮素利用效率,减轻土壤硝态氮的下移趋势和下移量,I1N1处理(灌溉60 mm,施氮80 kg·hm-2)为较优的灌溉施氮策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号