首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consequences of fragmentation for communities of mutualist partners are for the most part unknown; moreover, most studies addressing this issue have been conducted on plant-pollinator communities. We evaluated how the experimental fragmentation of lowland Amazonian rain forest influenced a community of ant-plant mutualists. We inventoried a total of 1057 myrmecophytes in four fragments and four continuous forest sites; the twelve plant species recorded were occupied by 33 ant morphospecies, of which 11 were obligate plant inhabitants. Neither plant species richness, ant species richness, nor total ant-plant density were significantly lower in forest fragments. However, eight of the plant species, including three of the four most common, had higher mean densities in continuous forest than fragments. Of these four species, only one (Cordia nodosa) had significantly different colonization rates between habitat types, with higher colonization rates of plants in fragments. This may be because the Azteca species it is associated with increases in abundance in forest isolates. Although our results suggest that communities of ant-plant mutualists are likely to persist in fragmented tropical landscapes 25 years after fragment isolation, most species are rare and populations sizes in fragments are extremely low. Environmental and demographic stochasticity could therefore limit long-term population viability. We suggest future studies focus on evaluating how fragmentation has altered herbivore pressure and the dispersal of ants and plants to fragments, since the interaction of these factors is likely to have the greatest impact on long-term patterns of population persistence.  相似文献   

2.
Tropical rainforests are becoming increasingly fragmented and understanding the genetic consequences of fragmentation is crucial for conservation of their flora and fauna. We examined populations of the toad Rhinella ornata, a species endemic to Atlantic Coastal Forest in Brazil, and compared genetic diversity among small and medium forest fragments that were either isolated or connected to large forest areas by corridors. Genetic differentiation, as measured by FST, was not related to geographic distance among study sites and the size of the fragments did not significantly alter patterns of genetic connectivity. However, population genetic diversity was positively related to fragment size, thus haplotype diversity was lowest in the smallest fragments, likely due to decreases in population sizes. Spatial analyses of genetic discontinuities among groups of populations showed a higher proportion of barriers to gene flow among small and medium fragments than between populations in continuous forest. Our results underscore that even species with relatively high dispersal capacities may, over time, suffer the negative genetic effects of fragmentation, possibly leading to reduced fitness of population and cases of localized extinction.  相似文献   

3.
Tropical forest fragmentation affects animal and plant populations in different ways. For plants, early stages (seed to seedling) are more sensitive to habitat alteration than adults, and can shape their future spatial patterns. Therefore, studying how seed germination and seedling growth and survival vary at different spatiotemporal scales enhances our understanding about plant recruitment in fragmented ecosystems. In this study we examine if, and to what extent, recruitment at early life-stages of Xymalos monospora (Monomiaceae), a bird-dispersed Afrotropical tree, differs between and within forest fragments that vary in size, surrounding matrix and microhabitats. Three years of field experiments (2004-2006) in south-east Kenya, revealed that patterns of seed germination and seedling survival and growth were largely inconsistent, both in space and time. Recruitment was not consistently higher in larger or less disturbed fragments. At smaller spatial scales within forest fragments, recruitment was subject to high between-year variation too, with decreased germination in gaps only in the dry year of 2004. However, performance of seeds and seedlings was consistently better away from than under conspecific fruiting trees. Our results imply that fragmented tree populations of X. monospora may become age-structured, or ultimately go extinct, if recruitment fails in subsequent years. This may especially affect populations in small, disturbed forest fragments, where seed dispersal and buffering against stochastic processes are generally reduced. Exotic plantations bordering indigenous forest fragments may provide suitable conditions for native tree recruitment; hence, forest expansion through enrichment planting should be considered in future conservation plans.  相似文献   

4.
Although invasive plants can have transformative effects on native plant communities, studies of the consequences of plant invasion for native fauna are generally restricted to primary consumers. Here we investigate whether an invasive shrub, Lonicera maackii, impacts native amphibians and evaluate evidence for the role of invasive plant-induced alteration of forest understory microclimate as a mechanism driving amphibian responses to L. maackii invasion. We sampled amphibian communities in forest plots with high or low density of L. maackii, and monitored microclimate (temperature and humidity at ground level) in the same forest plots. Amphibian species richness and evenness were lower in invaded plots. Invasion also resulted in shifts in amphibian species composition. Mean daily maximum temperature and mean daily temperature were lower in invaded plots, and counts of the Green frog Lithobates clamitans were marginally negatively related to mean daily temperature. Our work illustrates how an invasive ecosystem engineer may affect native organisms with which it shares no trophic connection, and suggests that changes in microclimate may be one mechanism by which alien plants affect communities where they invade.  相似文献   

5.
Tropical rainforests are disappearing at a rapid rate. Although several studies have revealed the detrimental effects of forest fragmentation on tropical birds, the ecological mechanisms facilitating the decline of populations have been poorly documented. In the tropical rainforests of Africa and America, ant-following birds track the massive swarm raids of army ants and prey on animals which are flushed by the ants. We analyzed the persistence of five species of ant-following birds along a habitat fragmentation gradient in western Kenya and tested if bird populations are limited by the abundance of army ant colonies in forests. Abundances of four of five ant-followers declined by 52–100% in forest fragments 113 ha. Multi-model Bayesian inference suggests that the decline of the three most specialized ant-followers is facilitated by a decrease in the abundance of the army ant Dorylus wilverthi in small forest fragments. Our data suggests that a second, fragmentation-tolerant army ant species, Dorylus molestus, does not functionally compensate for the decline of D. wilverthi because, first, of a higher affinity of birds to D. wilverthi raids (found for one species). Second, because the daytime activity of D. molestus is dependent on high humidity conditions, a pattern which was not found for D. wilverthi. Consequently, specialized ant-followers in small fragments, where D. wilverthi is missing, probably suffer from food scarcity due to a cease of army ant foraging in the dry season. Our results suggest that a subtle alteration of army ant communities caused by habitat fragmentation may have large ecological consequences.  相似文献   

6.
Fragmentation of tropical forest represents a major threat to some tree populations by reducing local population size and gene flow from other populations. Both processes can decrease outcrossing rates and genetic variation in remnant stands. Despite these risks, some tree species have pollen vectors that mitigate these negative consequences for fragmented populations. In this paper, we assess both pollen flow and diversity of pollen sources in continuous forest and isolated stands of Swietenia humilis, a tropical tree species pollinated by small insects. Using seven nuclear microsatellite markers, we test the hypothesis that genetic diversity and the number of pollen donors are lower in remnant populations. Results show that allelic richness of seeds is lower in isolated populations (6.1 vs. 8.3 alleles per locus), even though adult populations do not show this difference.Pollen pool structure is greater in isolated patches (ΦIso = 0.26) than in continuous forest (ΦFor = 0.14), which yields estimates of the average effective number of pollen donors (Nep) of 1.9 and 3.6 respectively. In addition, estimates of number of sires per mother indicate that isolated trees have half the number of pollen sources (4.98) than trees in the forest (9.8). Although extensive pollen movement (>2000 m) was recorded on both habitat conditions, indicating that fragmented patches are not isolated from pollen-mediated gene flow, this extensive pollen flow among trees in fragmented landscapes may not serve to counteract deleterious reproductive and genetic consequences of habitat fragmentation.  相似文献   

7.
Frugivorous animals disperse the seeds of the majority of rainforest plant species and hence play a key role in the trajectory of rainforest regeneration. This study investigated whether changes in the species composition of the frugivore community in fragmented rainforest in subtropical Australia is likely to impact the dispersal of native plant species. The potential of frugivorous bird and bat species to disperse the seeds of plant species in fragmented rainforest was assessed using published dietary information together with field surveys of frugivore abundance within intact forest, forest fragments and patches of regrowth. Frugivore species with reduced abundance in fragmented rainforest were the only known dispersers of 27 of the 221 native plant species in the data set (12% of species). These frugivore species were also major dispersers of plant species producing fruits wider than 10 mm and species from the families Rubiaceae, Lauraceae, Myrtaceae, Meliaceae, Lamiaceae and Vitaceae. Except for Rubiaceae, these plant taxa are also potentially dispersed by two of the frugivore species that were widespread in fragmented rainforest, Lopholaimus antarcticus and Ptilonorhynchus violaceus, although dispersal rates are likely to be lower in fragmented than in extensive rainforest. Consistent with other regions, large-seeded plants are susceptible to reduced dispersal in fragmented rainforest in subtropical Australia. However, we predict a smaller deficit in seed dispersal in fragmented forests than has been reported from other regions, due to factors such as functional overlap among frugivore species, the ability of many Australian rainforest vertebrates to persist in fragmented rainforest, and a lack of hunting in these forests. Nevertheless, rainforest fragmentation has reduced the abundance of a suite of frugivorous rainforest fauna, which in turn is likely to reduce the dispersal of a certain plant taxa and may alter patterns of plant regeneration in subtropical Australian rainforest fragments.  相似文献   

8.
Habitat fragmentation is thought to create a barrier to individual movements particularly for area-sensitive species which, by definition, prefer to breed in large tracts of forest. For two breeding seasons, we radio-tracked an area-sensitive species, the scarlet tanager Piranga olivacea, in a fragmented landscape in northeastern PA. We found that scarlet tanagers made extensive and frequent movements among fragments. Paired males were less likely to leave their capture fragment, and traveled shorter distances. Unpaired males in fragments had two distinct tactics we labeled: “Sedentary” and “Mobile”. Sedentary males stayed at one fragment and sang at high rates, while mobile males spent 58% of the total time tracked off their capture fragment and traveled over a kilometer away from the capture site over open fields and through forests. Mobile males were not floaters per se because they were territorial (i.e., singing) in multiple sites. Habitat structure of a fragment did not correlate with the percent time a male spent off the capture fragment. Males in fragments experienced lower pairing success and were more likely to be first time breeders compared to males in continuous forest. Our results suggest that movements by scarlet tanagers in fragmented landscapes are not restricted during the breeding season, and that these movements are related directly to pairing status and indirectly to population density.  相似文献   

9.
Forests fragmentation reduces the density of natural plant populations forming patches of the remaining individuals. One of the biotic interactions that can be affected by forest fragmentation and is poorly studied is seed predation. We determined the effects of forest fragmentation on seed and fruit predation in Ceiba aesculifolia by comparing trees in continuous forest with trees in fragmented forest. We compared the following variables: (a) frequency of fruit predation by Collie’s squirrel (Sciurus colliaei) in each habitat; (b) frequency of the cotton-staining bug seed predator (Dysdercus, Orden Hemiptera) in each habitat; (c) the effect of seed predation on germination frequency and time; and (d) the effect of different life stages of Dysdercus on seed viability. In continuous habitat, 100% of the trees presented fruits with squirrel predation while only 34% of trees in fragmented habitats presented fruit predation. In continuous forest 27% of the trees contained fruits with the seed predator Dysdercus, while only 2% of the trees in fragmented forest presented Dysdercus. The initial weight of damaged seeds was greater than seeds that were not damaged indicating that seed predators select heavier seeds to feed upon. Frequency of seed germination was affected by different life stages; pre-adults decreased germination significantly more than nymphs and adults. Seed predation significantly increased the time it took for germination to occur. Our study shows that forest fragmentation significantly affects predation patterns of squirrels and cotton-staining bugs. Reduction of natural seed predators in forest fragments may have long-term consequences on forest structure and diversity.  相似文献   

10.
Madagascar’s diverse and mostly endemic fauna and flora suffer from recent landscape changes that are primarily caused by high levels of human activities. The loss and fragmentation of forest habitats are well known consequences of human activities. In this study, we investigate the effects of forest fragmentation on presence, abundance and genetic diversity in a larger-bodied lemur species, Lepilemur edwardsi, in northwestern Madagascar. In addition, we characterized the genetic differentiation among populations and demographic changes. We found L. edwardsi at only 13 (76.5%) of 17 visited sites, 11 of which were situated in the Ankarafantsika National Park (ANP). We captured between two and 17 individuals per site. We sequenced the mtDNA d-loop of all samples and genotyped 14 microsatellite loci in two exemplary populations for demographic analyses. A negative influence on forest fragmentation could be detected, since the fragments had a lower genetic diversity than sites in the ANP. Genetic differentiation between populations ranged from low to high but was almost always significant. A typical pattern of isolation-by-distance could not be detected and the data could rather be interpreted as results of random genetic drift. The data furthermore revealed signals of a demographic collapse of about two orders of magnitude in the two exemplary sites. This decline probably started during the last few hundred years of intensified human disturbances and population growth. Given the results of this study, urgent conservation actions are needed and should concentrate on an effective protection of the few remaining populations in order to ensure the long-term survival of L. edwardsi.  相似文献   

11.
Developing a predictive theory for species responses to habitat fragmentation is a large, complex challenge in conservation biology, and meeting this challenge likely requires tailoring predictions to specific habitats and taxa. We evaluate the effects of fragmentation on forest birds living in three distinct forest ecosystems found in Brazilian Atlantic forest: seasonal semi-deciduous forest (SF), mixed rain forest (MF), and dense rain forest (DF). We test the hypotheses that (1) bird species most prevalent in SF (relative to other habitat types) will be least vulnerable to population declines in fragmented SF, and (2) species with stronger affiliations with DF or MF will be relatively more sensitive to fragmentation in SF. Using an exploratory statistical technique called “Rank Occupancy–Abundance Profiles (ROAPs),” we compared distribution and abundance of birds among large “continuous” areas of each forest type, then compared abundances in continuous SF forests with patterns of abundance in small fragments of SF, where edge effects could play a marked role in population dynamics. Overall, 39 species showed substantially lower local abundance, occupancy, or both in SF fragments versus continuous SF. As predicted, a higher proportion of bird species associated with DF appeared sensitive to fragmentation in SF; by contrast, species most abundant in SF and MF were similarly abundant in fragmented SF. Our study demonstrates how quantifying distribution and abundance in diverse habitats may enhance managers’ ability to incorporate species-specific responses to human disturbances in their conservation plans, and points out ways that even small reserves may have significant conservation value.  相似文献   

12.
Forested landscapes in Southeast Asia are becoming increasingly fragmented, making this region a conservation and research priority. Despite its importance, few empirical studies of effects of fragmentation on biodiversity have been undertaken in the region, limiting our ability to inform land-use regimes at a time of increased pressure on forests. We estimated the biodiversity value of forest fragments in peninsular Malaysia by studying fragmentation impacts on insectivorous bat species that vary in dependence of forest. We sampled bats at seven continuous forest sites and 27 forest fragments, and tested the influence of fragment isolation and area on the abundance, species richness, diversity, composition and nestedness of assemblages, and the abundance of the ten most common species. Overall, isolation was a poor predictor of these variables. Conversely, forest area was positively related with abundance and species richness of cavity/foliage-roosting bats, but not for that of cave-roosting or edge/open space foraging species. The smallest of fragments (<150 ha) were more variable in species composition than larger fragments or continuous forest, and larger fragments retained substantial bat diversity, comparable to continuous forest. Some fragments exhibited higher bat abundance and species richness than continuous forest, though declines might occur in the future because of time lags in the manifestation of fragmentation effects. Our findings suggest that fragments >300 ha contribute substantially to landscape-level bat diversity, and that small fragments also have some value. However, large tracts are needed to support rare, forest specialist species and should be the conservation priority in landscape-level planning. Species that roost in tree cavities or foliage may be more vulnerable to habitat fragmentation than those that roost in caves.  相似文献   

13.
The establishment of plant species depends crucially on where the seeds are deposited. However, since most studies have been conducted in continuous forests, not much is known about the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in microhabitats and their effects on seed survival. In this study, we evaluated the effects of forest fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, we examined the influence of the microhabitat structure, fauna and fragment size on the pattern of seed predation. Fragments <100 ha showed similar abiotic and biotic characteristics to those of the forest edge, with no seed predation in these areas. Forest fragments 230-380 ha in size did not present “safe sites” for S. romanzoffiana seed survival and showed high seed predation intensity in all microhabitats evaluated. In fragments larger than 1000 ha, the seed predation was lower, with abiotic and biotic differences among gaps, interior forests and forest edges. In these fragments, the survival of S. romanzoffiana seeds was related to squirrel abundance and interior forest maintenance. Based on these results, we concluded that there are no safe sites for S. romanzoffiana seed establishment in medium- and small-sized fragments as result of the biotic and abiotic pressure, respectively. We suggest that on these forest fragments, management plans are needed for the establishment of S. romanzoffiana, such as interior forest improvement and development in small-sized sites in order to minimize the edge effects, and on medium-sized fragments, we suggest post-dispersal seed protection in order to avoid seed predation by vertebrates. Our findings also stress the importance of assessing the influence of forest fragmentation on angiosperm reproductive biology as part of the effective planning for the management of fragmented areas.  相似文献   

14.
Habitat fragmentation is often associated with reduced levels of fitness and local extinction of plant species, and consequently poses a major threat to the persistence of species worldwide. The majority of demography-based fragmentation studies to date have focussed primarily on fragmentation impacts on individual plant fecundity. Here we investigate the impact of habitat fragmentation on the demography (plant height classes and density) and key population dynamic processes for the rainforest tree species Macadamia integrifolia (Proteaceae). Raceme and fruit production and seedling emergence across fragmented sites exceeded that in more intact sites with no apparent difference in short-term mortality rates. Fecundity of flowering trees did not appear to be affected by fragmentation. Instead, overall reproductive output in fragmented sites was enhanced relative to undisturbed sites due to a higher proportion of reproductively active individuals. The probability of flowering and fruiting was negatively correlated with the projected foliage cover (PFC) surrounding individual trees, and average PFC was significantly lower in small and medium fragments, suggesting light availability as a potential contributor to the trends observed here.This study demonstrates that the short-term effects of habitat fragmentation on population viability may not necessarily be detrimental for some species, and highlights the importance of assessing not only the fecundity of flowering individuals but also the proportion of individuals reproducing within fragments.  相似文献   

15.
Forest fragmentation results in population declines and extinctions for many forest vertebrates, but little is known about the mechanisms causing declines in fragments. We investigated potential causes of declines in forest fragments for an Amazonian forest frog (Colostethus stepheni) at an experimental fragmentation study site in central Amazonian Brazil using field estimates of abundance and vital rates coupled with population simulations. Although adult male survival was not reduced by fragmentation, mean clutch size was reduced by 17%. Population simulations demonstrate that a reduction in clutch size of this magnitude is sufficient to cause the observed magnitude of population declines in fragments. Female snout-vent length was also reduced in fragments and may be related to the observed reduction in clutch size.  相似文献   

16.
The Maulino forest is a unique temperate ecosystem restricted to a small range of the coast of central Chile. This forest harbors many endemic species, and is threatened due to intensive deforestation and fragmentation. Currently the Maulino forest is composed of a suite of small fragments scattered in a landscape dominated by exotic plantations. The fragmentation of the Maulino forest has resulted in a higher abundance of granivores in small forest fragments compared with continuous forest. In order to determine if fragmentation-induced changes in granivore abundance affects the granivory of different size seeds, we experimentally assessed seed predation of a large-seeded species [Nothofagus glauca (Phil.) Krasser] and a small-seeded species [Nothofagus obliqua (Mirbel) Oersted] in the edges and interior of one continuous (large) forest and three small fragments (∼3 ha) surrounded by plantations of the exotic tree Pinus radiata. To determine what kind of granivores are preying upon seeds, seeds of both species were excluded from and exposed to large and small granivores. Granivory was higher in small fragments than in continuous forest, higher in the edges than in the forest interior, and higher upon large than on small seeds. Rodents, which were more abundant in forest fragments, were the main consumers. Thus, fragmentation indeed affects granivory increasing the consumption of seeds by predators inhabiting the Maulino forest remnants or coming from the matrix. This change may affect the future structure of the tree community in forest fragments.  相似文献   

17.
Changes to minor patch types in forested landscapes may have large consequences for forest biodiversity. The effects of forest management and environment on these secondary patch types are often poorly understood. For example, do early-to-mid successional minor patch types become more expansive as late successional forest types are fragmented or do they also become more fragmented in managed landscapes? We evaluated the dynamics of early-to-mid successional hardwood patches in a conifer-dominated landscape in relation to environment and land ownership in the central Coast Range of Oregon, USA, from the time of early logging to the present-day using scanned and georeferenced aerial photographs and a GIS. Hardwood patches declined in size, number, total area, and within-patch cover-type heterogeneity, and became more irregular in shape. Patch turnover and fragmentation was high, with most patches present at the historical date disappearing by the present-day. Land ownership was important to hardwood patch dynamics: hardwoods declined on lands owned by the USDA Forest Service, increased on non-industrial private lands, and were at similar levels at both dates on private forest industry lands. Patch locations became more restricted to near-stream, lower elevation areas where hardwoods are competitive. The relatively extensive distribution of hardwood patches at the historical date probably resulted from earlier fire, selective logging, and grazing. In recent decades, forest management that includes fire suppression and intensive management, and ecological constraints have resulted in a landscape in which early-to-mid successional hardwood patches have been reduced in size, fragmented, and restricted to particular locales.  相似文献   

18.
The responses of plant-animal interactions to forest fragmentation can vary. We hypothesized that large-seeded plant species would be more susceptible to forest fragmentation than small-seeded species because large-seeded species rely on a few, extinction prone dispersers. We compared seed dispersal of the large-seeded, mammal dispersed Duckeodendron cestroides and the small-seeded, avian dispersed Bocageopsis multiflora. The number, percentage, distance, and distributions of dispersed seeds were all reduced in fragments for Duckeodendron but not for Bocageopsis. Other fragmentation research in tropical communities supports this hypothesis through three lines of evidence: (1) Large-seeded plant species are more prone to extinction, (2) Fragmentation restricts or alters the movement of large animal dispersers more than small dispersers, and (3) Large and small-seeded species seem to be differentially linked to primary and secondary forest habitats. Therefore, small-seeded plants may be more resilient to forest fragmentation while large-seeded species may be more susceptible and should be a priority for conservation.  相似文献   

19.
Summary Microbial biomass in the upper 7 cm of soil and needle decomposition on the forest floor were measured seasonally for 10 months in a mountain hemlock (Tsuga mertensiana) old-growth forest and in a regrowth forest after Phellinus weirii, a root-rot pathogen infection, had caused disturbance. The microbial biomass was higher in the old-growth forest soil than in the regrowth forest soil. However, T. mertensiana needle decomposition rates were higher in the regrowth than in the old-growth forest. Total N, Ca, Fe, Cu, and Zn concentrations in needles increased during the 1st year of decomposition in both the old and the regrowth forests, but P, K, Mg, Mn, and B concentrations decreased. N, P, K, Mg, Cu, and Zn concentrations were lower in regrowth than in old-growth decomposing needles. During mineralization, needles in the regrowth forests released more N, P, and K as a result of higher needle decomposition rates. Our results suggest that higher needle decomposition rates increased the mineralization of N, P, and K, which may lead to increased soil fertility and faster tree growth rates in the regrowth forest.  相似文献   

20.
金沙江干热河谷人工赤桉林群落结构   总被引:5,自引:2,他引:5       下载免费PDF全文
 为干热河谷地区的生态林建设提供理论依据,从反映群落稳定性的群落结构、物种多样性以及生长量和生物量等常用指标分析,金沙江干热河谷地区人工赤桉(Eucalyptuscamaldulensis)林密度普遍偏高,结构比较简单,群落稳定性较差。3种密度的赤桉林群落,随着林分密度的增大,林下植被层的群落分异性越大,林分中主要分布优势种(乔木为赤桉,林下植物为扭黄茅),其他种群的数量极少,林下植被层的结构比较简单,随着林分密度的增大,物种的丰富度、ShannonWiener指数、物种均匀度和生态优势度等4个指标不断减小,群落物种多样性在不断降低,结构合理性越差;群落生长量和生物量的变化,基本随赤桉林的密度增加而减小,密度最小的林分F1的生物量是其他2种高密度林分生物量的2倍以上。各林分林木生长缓慢,即使密度最小的林分F1的年平均胸径和树高生长量,分别只有0.72cm和0.78m。为了增加干热河谷地区人工乔木林群落的稳定性,使其逐步实现正向演替,发挥其应有的生态防护功能,应该考虑降低乔木层群落密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号