共查询到20条相似文献,搜索用时 13 毫秒
1.
Weed communities respond to changes in the diversity of crop sequence composition and double cropping 下载免费PDF全文
Agricultural intensification, besides increasing land productivity, also affects weed communities. We studied weed shifts in cropping sequences differing in the identity and number of crops grown. We also evaluated whether dissimilar weed communities in different cropping systems converge towards more similar communities, when the same sequence is cropped during 2 years. In three locations in the Rolling Pampa, Argentina, field experiments were conducted including five cropping systems in the first year (winter cereal/soyabean, field pea/soyabean, and field pea/maize double crops, and maize and soyabean as single crops), while the same sequence was grown in the following 2 years (wheat/soyabean double crop and maize). Changes in weed community composition and structure were analysed through multivariate analyses and frequency–species ranking plots. Weed communities differed first among sites, while weed shifts within each site were mainly associated with growing season and crop type. Differences among crop sequences were higher in the first year, mostly related to specific crop grown, rather than to the number of crops in the sequences. Differences were reduced when the same sequence was grown during two consecutive seasons. Frequency of highly common weeds was negatively associated with the number of days with high crop cover. Our findings contribute to understand weed shifts in consecutive growing seasons, which may help readapting crop sequences to reduce the occurrence of abundant weed species. 相似文献
2.
This study assessed the cultural and weed management factors influencing the weed communities of Hungarian rice fields. Hungary is situated at the northern limit of rice production with a history of about 300 years of rice culture. We surveyed the weed flora and 25 background variables in 100 active rice fields. Using a minimal adequate model containing 11 terms, 48.5% of the total variation in weed species data could be explained. The net effects of nine variables on species composition were significant. Crop cover was found to be the most important explanatory variable, which was followed by the herbicides penoxsulam and azimsulfuron, tillage depth, phosphorous and potassium fertilisers, years after last rotation, water depth in May, sowing type, pendimethalin and water conductivity. Filamentous algae, as the most abundant group of weeds, were positively associated with deep tillage, deep water and surface sowing. Echinochloa crus‐galli, one of the most troublesome grass weeds, was associated with low rice cover, shallow water and later years after crop rotation, while weedy rice favoured high crop cover, deep water and soil sowing. These findings can be used to design improved weed management strategies. The occurrence of red list species and charophytes in diverse micro‐mosaic patterns deserves attention from a conservation perspective, as well. The maintenance of these unique charophyte communities can be facilitated by shallow tillage without soil inversion. 相似文献
3.
Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales 下载免费PDF全文
Weeds tend to aggregate in patches within fields, and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at various scales, the strength of the relations between soil properties and weed density would also be expected to be scale‐dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We developed a general method that uses novel within‐field nested sampling and residual maximum‐likelihood (reml ) estimation to explore scale‐dependent relations between weeds and soil properties. We validated the method using a case study of Alopecurus myosuroides in winter wheat. Using reml , we partitioned the variance and covariance into scale‐specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales, we optimised the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment. 相似文献
4.
We develop a new conceptual model we call the Resource Pool Diversity Hypothesis (RPDH) aimed at explaining how soil resource pool diversity may mediate competition for soil resources between weeds and crops. The primary tenets of the RPDH are that (i) in plant communities, the intensity of inter-specific competition can depend upon the degree to which niche differentiation and resource partitioning occur among species, (ii) agricultural systems are unique in that management practices, such as crop rotation, source of fertility and weed management, result in inputs to the soil and (iii) these inputs directly or indirectly become soil resource pools from which crops and weeds may partition resources. The RPDH leads to the novel prediction that along a gradient of increasing cropping system diversity, yield loss due to weed–crop competition (i.e. the impact on yield per unit weed density) for soil resources should decrease. Similarly, the degree to which crops and weeds overlap in soil resource niche breadth (which is determined by species-specific functional traits for resource acquisition), will determine the extent to which weed–crop competition weakens as resource pool diversity increases. While there have been no direct tests of the RPDH, we highlight evidence from the agricultural literature that provides strong support for components of the hypothesis. Validation of the RPDH would have important implications across a broad range of cropping systems for the development of management strategies that aim to reduce yield loss impact per unit weed plant density and the fundamental principles of integrated weed management, such as the concepts of weed thresholds and critical periods. 相似文献
5.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes. 相似文献
6.
Ten commercial clones of willow and two breeding clones were studied for their ability to compete with weeds during the establishment year at three different sites in southern Sweden. Cuttings were planted according to commercial practice in April, and the two treatments, ‘Weeded’ and ‘Unweeded’, were laid out in a strip‐plot design. Weeds in the ‘Weeded’ treatment were removed mechanically and by hand hoeing. Willow plant shoot weight and plant mortality were measured after the first growing season to evaluate the initial effect of weeds. In addition, weed flora, weed aboveground biomass, soil properties, shoot damage and soil moisture were assessed during the growing season. Plant mortality was <1% in the ‘Weeded’ treatment at the three study sites, while in ‘Unweeded’ it was significantly higher, 2.7%, 24.6% and 37.4%. Weeds reduced willow plant shoot weight by 93.4%, 94.0% and 96.1% at the three sites. Only one site showed clonal differences in shoot growth reduction, as well as in plant mortality. These results show the importance of weed control in willow plantations, as growth of all clones tested were dramatically hampered by weeds during the first growing season, regardless of trial site conditions. Moreover, conditions at certain sites, such as soil properties in combination with weed cover, may cause high plant mortality during the establishment year in this perennial biomass crop. 相似文献
7.
Rapid and early changes in morphology and gene expression in soya bean seedlings emerging in the presence of neighbouring weeds 下载免费PDF全文
Light signalling is an important mechanism of plant competition during the early stages of seedling development. Far‐red‐enriched (FR‐E) light reflected from neighbouring weeds has been shown to induce the shade avoidance response leading to changes in plant morphology and increased variability in yields. In this study, the morphological and molecular changes occurring at the hypocotyl arch and primary leaf stage of soya bean development were investigated in response to FR‐E light reflected from neighbouring weeds. A reduction in the root/shoot was identified at the hypocotyl arch stage, and an increase in height was detected at the unifoliate stage of soya bean seedlings. In addition, FR‐E light induced a change in the expression profile of reactive oxygen species (ROS)‐scavenging genes. Early in seedling development, ROS‐scavenging genes were upregulated. However, this trend was reversed at later stages of development with downregulation of several ROS‐scavenging genes. These results demonstrated the rapidity of induction of the shade avoidance response and that gene expression in soya bean seedlings was dependent upon developmental stage and tissue type sampled. 相似文献
8.
Sclerotinia sclerotiorum is an important pathogen of many crop plants which also infects wild hosts. The population structure of this fungus was studied for different crop plants and Ranunculus acris (meadow buttercup) in the UK using eight microsatellite markers and sequenced sections of the intergenic spacer (IGS) region of the rRNA gene and the elongation factor 1‐alpha (EF) gene. A total of 228 microsatellite haplotypes were identified within 384 isolates from 12 S. sclerotiorum populations sampled in England and Wales. One microsatellite haplotype was generally found at high frequency in each population and was distributed widely across different hosts, locations and years. Fourteen IGS and five EF haplotypes were found in the 12 populations, with six IGS haplotypes and one EF haplotype exclusive to buttercup. Analysis of published sequences for S. sclerotiorum populations from the USA, Canada, New Zealand and Norway showed that three of the IGS haplotypes and one EF haplotype were widely distributed, while eight IGS haplotypes were only found in the UK. Although common microsatellite and IGS/EF haplotypes were found on different hosts in the UK, there was evidence of differentiation, particularly for one isolated population on buttercup. However, overall there was no consistent differentiation of S. sclerotiorum populations from buttercup and crop hosts. Sclerotinia sclerotiorum therefore has a multiclonal population structure in the UK and the wide distribution of one microsatellite haplotype suggests spatial mixing at a national scale. The related species S. subarctica was also identified in one buttercup population. 相似文献
9.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions. 相似文献
10.
Weed species composition of maize fields in Germany is influenced by site and crop sequence 下载免费PDF全文
During the last decade, maize has become the crop with the second largest acreage in Germany. Therefore, agricultural advisors and the plant protection sector are interested in an overview of the weed species composition in maize fields, their determining factors and trends. From 2001 to 2009, a weed survey was conducted in 1460 maize fields throughout Germany. Data on crop management and soil characteristics were collected via farmer questionnaires. Principal component analysis and redundancy analysis were used to analyse patterns in weed species composition. The late spring and summer germinating species Chenopodium spp., Echinochloa crus‐galli and Solanum nigrum occurred with high densities and frequencies, but their occurrence was determined by different factors. Other frequent weed species were those that typically accompany autumn‐sown crops. The variation in species composition was significantly related to environmental factors (9.1% explained variance), particularly geographical latitude and precipitation, and management factors (4.7% explained variance), particularly crop sequence. The relative importance of these factors seems universal, when compared with surveys in other crops and regions. The factor ‘year’ was of minor importance (0.9% explained variance). Over the 9‐year period, no changes in weed species composition could be determined. The results suggest that despite the limited impact of crop management on weed species composition, farmers can use crop sequence to suppress individual species. The survey furthermore sets a baseline against which future changes can be measured in a landscape of rapidly changing agricultural land use. 相似文献
11.
Control of Elymus repens by rhizome fragmentation and repeated mowing in a newly established white clover sward 下载免费PDF全文
Control of perennial weeds, such as Elymus repens, generally requires herbicides or intensive tillage. Alternative methods, such as mowing and competition from subsidiary crops, provide less efficient control. Fragmenting the rhizomes, with minimal soil disturbance and damage to the main crop, could potentially increase the efficacy and consistency of such control methods. This study's aim was to investigate whether fragmenting the rhizomes and mowing enhance the control of E. repens in a white clover sward. Six field experiments were conducted in 2012 and 2013 in Uppsala, Sweden, and Ås, Norway. The effect of cutting slits in the soil using a flat spade in a 10 × 10 cm or 20 × 20 cm grid and the effect of repeated mowing were investigated. Treatments were performed either during summer in a spring‐sown white clover sward (three experiments) or during autumn, post‐cereal harvest, in an under‐sown white clover sward (three experiments). When performed in autumn, rhizome fragmentation and mowing reduced E. repens shoot biomass, but not rhizome biomass or shoot number. In contrast, when performed in early summer, rhizome fragmentation also reduced the E. repens rhizome biomass by up to 60%, and repeated mowing reduced it by up to 95%. The combination of the two factors appeared to be additive. Seasonal differences in treatment effects may be due to rhizomes having fewer stored resources in spring than in early autumn. We conclude that rhizome fragmentation in a growing white clover sward could reduce the amount of E. repens rhizomes and that repeated mowing is an effective control method, but that great seasonal variation exists. 相似文献
12.
To reveal the effects of herbicide selection on genetic diversity in the outcrossing weed species Schoenoplectus juncoides, six sulfonylurea‐resistant (SU‐R) and eight sulfonylurea‐susceptible (SU‐S) populations were analysed using 40 polymorphic inter‐simple sequence repeat loci. The plants were collected from three widely separated regions: the Tohoku, Kanto and Kyushu districts of Japan. Genetic diversity values (Nei's gene diversity, h) within each SU‐S population ranged from h = 0.125 to h = 0.235. The average genetic diversity within the SU‐S populations was HS = 0.161, and the total genetic diversity was HT = 0.271. Although the HS of the SU‐R populations (0.051) was lower than that of the SU‐S populations, the HT of the SU‐R populations (0.202) was comparable with that of the SU‐S populations. Most of the genetic variation was found within the region for both the SU‐S and SU‐R populations (88% of the genetic variation respectively). Two of the SU‐R populations showed relatively high genetic diversity (h = 0.117 and 0.161), which were comparable with those of the SU‐S populations. In contrast, the genetic diversity within four SU‐R populations was much lower (from h = 0 to 0.018) than in the SU‐S populations. The results suggest that selection by sulfonylurea herbicides has decreased genetic diversity within some SU‐R populations of S. juncoides. The different level of genetic diversity in the SU‐R populations is most likely due to different levels of inbreeding in the populations. 相似文献
13.
Occurrence and diversity of Tomato spotted wilt virus isolates breaking the Tsw resistance gene of Capsicum chinense in Yunnan,southwest China 下载免费PDF全文
L. Jiang Y. Huang L. Sun B. Wang M. Zhu J. Li C. Huang Y. Liu F. Li Y. Liu J. Dong Z. Zhang X. Tao 《Plant pathology》2017,66(6):980-989
Widely used resistant peppers (Capsicum spp.) bearing the Tsw locus triggered the rapid emergence of resistance‐breaking (RB) isolates of Tomato spotted wilt virus (TSWV) around the world. However, although TSWV‐induced diseases have rapidly increased in Yunnan, southwest China, in recent years, no information is available about the diversity of TSWV isolates in this region. In this study, the occurrence of natural TSWV RB variants among isolates collected in Yunnan is reported. Initially, a TSWV isolate from asparagus lettuce (TSWV‐LE) was collected in Yunnan in 2012. Surprisingly, this isolate of TSWV induced systemic necrosis on pepper carrying the Tsw resistance gene. Novel TSWV isolates, collected in 2015, included a tomato isolate (TSWV‐YN18) and a tobacco isolate (TSWV‐YN53) that also overcame Tsw‐mediated resistance. TSWV‐YN18 induced systemic ringspots, whereas TSWV‐YN53 caused systemic chlorotic mottling. Variations in the TSWV nonstructural (NSs) protein are the key determinants associated with Tsw resistance‐breaking isolates. It was found that TSWV‐LE NSs retained the hypersensitive response (HR) induction, whereas TSWV‐YN18 and TSWV‐YN53 NSs were unable to induce HR. However, the NSs of all three RB isolates suppressed RNA silencing. Sequence analysis of the NSs revealed that RB isolates of Yunnan have no amino acid mutation sites common to other previously reported RB isolates. However, two amino acids (F74 and K272) on TSWV‐LE NSs make it distinct from TSWV‐YN18 and TSWV‐YN53. The occurrence of different RB isolates and the failure of Tsw‐mediated resistance control pose serious threats to domestic pepper crops in southwest China. 相似文献
14.
The aim of this study was to investigate the potential diversity and pathogen‐specificity of sources of quantitative resistance to leaf rust caused by Puccinia triticina in French wheat germplasm. From a set of 86 genotypes displaying a range of quantitative resistance levels during field epidemics, eight wheat genotypes were selected and challenged in a greenhouse with three isolates of the pathogen, belonging to different pathotypes. Five components of resistance were assessed: infection efficiency, for which an original methodology was developed, latent period, lesion size, spore production per lesion, and spore production per unit of sporulating tissue. High diversity and variability for all these components were expressed in the host × pathotype combinations investigated; isolate‐specificity was found for all the components. The host genotypes displayed various resistance profiles, based on both the components affected and the isolate‐specificity of the interaction. Their usefulness as sources of quantitative resistance was assessed: line LD7 probably combines diversified mechanisms of resistance, being highly resistant for all the components, but displaying isolate‐specificity for all the components; cv. Apache did not show isolate specificity for any of the components, which could be related to the durability of its quantitative resistance in the field over more than 11 years. 相似文献
15.
L. A. Walker 《国际虫害防治杂志》2013,59(1):34-42
Abstract The properties of banana spray oils have been investigated by a number of researchers. The results of these investigations are reviewed in this paper, and include information on volatility (distillation range, flash point); flow characteristics (viscosity, pour point); other physical properties (specific gravity, colour, aniline point); and chemical properties (unsulphonated mineral residues, aromatics, paraffins and naphthenes). A comparison of distillation curves is of greater significance than comparison of individual boiling points. Such a comparison will show whether any one oil product is a homogeneous oil or a mixture of heavy and light oils. Disease control is closely related to volatility of the spray oil; the lower the volatility of the oil the better the disease control. Phytotoxicity (leaf-flecking) increases as the percentage volatility of the spray oil decreases. Oil volatility governs the amount of oil remaining on the leaf after application. The initial amount of oil applied to the leaf is of less significance in the fungistatic effect than is the amount of oil remaining on or in the leaf. From a viewpoint of Sigatoka disease control, flash points are of little significance, but must be considered from the viewpoint of safety in storage, transportation and use. As the viscosity of spray oils increases [in the range 35-100 Saybolt Universal Seconds (SUS) at 100[ddot]F] disease incidence decreases and phytotoxicity increases on sprayed banana leaves. The naphthenic oils are superior to the paraffinic oils, particularly in the viscosity range of 75-85 SUS at 100[ddot]F, for spraying bananas. The performance of banana spray oils is related to the proportions of the major hydrocarbon groups (aromatics, naphthenes and paraffins) present in the oil. Properties such as specific gravity and aniline point are indicative of the proportions of the major hydrocarbon groups in a spray oil. Colour of mineral oils is of no significance in the control of Sigatoka disease. Light mineral oils with unsulphonated mineral residue (U.M.R.) in the range of 70-99.9 are equally effective in Sigatoka disease control regardless of U.M.R. However, the degree of leaf damage (phytotoxicity) is directly related to U.M.R. value. The oils of high U.M.R. cause the least damage. The aromatic fraction of four spray oils tested (heavy paraffinic, light paraffinic, heavy naphthenic and light naphthenic) caused abundant phytotoxicity at a deposit level of 3 US gal/ac. There was little or no phytotoxicity and no appreciable disease control at a deposit level of 1.5 US gal/ac. Paraffinic and naphthenic oils of comparable U.M.R. value (94-95%) and viscosity (74-75 SUS at 100[ddot]F) provide good disease control within the deposit range 1.4-2.1 US gal/ac. At these deposit levels the naphthenic oil causes only 20 and 50% respectively as much phytotoxic flecking as the paraffinic oil. Photosynthesis is inhibited by the application of petroleum oil to banana leaves. It is the opinion of the writer that a long-term trial (a minimum of two years) should be conducted to evaluate the effect of a comparable naphthenic and paraffinic oil on Sigatoka disease control and banana yield. 相似文献
16.
基于石羊河流域8个气象站点1984—2019年逐日气象资料,分析参考作物蒸散量(ET0)时空变化规律,多种定性与定量分析方法结合,揭示ET0变化与气象因素间的相关关系,确定主导气象要素,探明ET0变化对主导因子敏感程度及贡献.结果表明:石羊河流域ET0上升趋势显著,流域大部分区域达到0.05显著性水平;空间上呈现由南向... 相似文献
17.
A. Negahi C. Ben L. Gentzbittel P. Maury A. R. Nabipour A. Ebrahimi A. Sarrafi M. Rickauer 《Plant pathology》2014,63(2):308-315
Verticillium albo‐atrum is responsible for considerable yield losses in many economically important crops, among them alfalfa (Medicago sativa). Using Medicago truncatula as a model for studying resistance and susceptibility to V. albo‐atrum, previous work has identified genetic variability and major resistance quantitative trait loci (QTLs) to Verticillium. In order to study the genetic control of resistance to a non‐legume isolate of this pathogen, a population of recombinant inbred lines (RILs) from a cross between resistant line F83005.5 and susceptible line A17 was inoculated with a potato isolate of V. albo‐atrum, LPP0323. High genetic variability and transgressive segregation for resistance to LPP0323 were observed among RILs. Heritabilites were found to be 0·63 for area under the disease progress curve (AUDPC) and 0·93 for maximum symptom score (MSS). A set of four QTLs associated with resistance towards LPP0323 was detected for the parameters MSS and AUDPC. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 4 to 21%. Additive gene effects showed that favourable alleles for resistance all came from the resistant parent. The four QTLs are distinct from those described for an alfalfa V. albo‐atrum isolate, confirming the existence of several resistance mechanisms in this species. None of the QTLs co‐localized with regions involved in resistance against other pathogens in M. truncatula. 相似文献
18.
Characterization,genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India 下载免费PDF全文
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a disease of crucifer crops. The objective of this study was to characterize races of Xcc, their distribution and genetic diversity in India. Two hundred and seventeen isolates of bacteria were obtained from 12 different black rot‐infected crucifer crops from 19 states of India; these were identified as Xcc based on morphology, hrpF gene and 16S rRNA gene based molecular markers and pathogenicity tests. Characterization of races was performed by using a set of seven differential crucifer hosts, comprising two cultivars of turnip (Brassica rapa var. rapa) and cultivars of Indian mustard (B. juncea), Ethiopian mustard (B. carinata), rapeseed mustard (B. napus), cauliflower (B. oleracea) and Savoy cabbage (B. oleracea var. sabauda). Races 1, 4 and 6 of Xcc were identified and, among these races, race 1 followed by race 4 dominated most of the states of India. Genetic diversity of the Indian isolates of Xcc was analysed using repetitive sequence‐based PCR (rep‐PCR) including primers for REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX (amplifying with BOX A1 R primer) repetitive elements. This method of fingerprinting grouped the isolates into 56 different DNA types (clusters) with a 75% similarity coefficient. Among these clusters, DNA types 22 and 53 contained two different races 1 and 4, whereas DNA type 12 contained races 1, 4 and 6. However, no clear relationship was observed between fingerprints and races, hosts or geographical origin. 相似文献
19.
Response of Sorghum halepense demographic processes to plant density and rimsulfuron dose in maize 下载免费PDF全文
J Barroso B D Maxwell J Dorado D Andújar C San Martín C Fernández‐Quintanilla 《Weed Research》2016,56(4):304-312
In spatially heterogeneous weed infestations, variable dose technologies could be used to minimise herbicide use; high doses could be applied to reduce high‐density patches and low doses to maintain weed populations in low‐density portions of a field. To assess the potential short‐ and long‐term effects of variable herbicide dose and site‐specific management, the major weed demographic processes were described and parameterised in this study. Various doses of rimsulfuron (from 0 to 12.5 g a.i. ha?1) were applied to different densities of Sorghum halepense (0–100 plants m?2). Contrary to similar studies with other weed species, higher herbicide efficacy was not observed at low densities, suggesting that the same rimsulfuron dose should be applied regardless of the S. halepense density. The highest percentage of control was obtained with the full rimsulfuron dose. However, it did not guarantee a decrease of the infestation in the following season in the field areas where the initial S. halepense density was lower than 60 plants m?2. Reduced doses of rimsulfuron to control S. halepense cannot be recommended based on our results. 相似文献
20.
L Molinero‐Ruiz A B García‐Carneros M Collado‐Romero S Raranciuc J Domínguez J M Melero‐Vara 《Weed Research》2014,54(1):87-96
The parasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower production in eastern and southern Europe and in the Middle East. Although genetic resistance is the most effective control method, new parasite races evolve overcoming sunflower resistance. In this work, highly virulent populations of O. cumana were analysed for pathogenicity and genetic diversity. The virulence of 11 populations from Hungary, Romania, Spain and Turkey was assessed and compared after infection of sunflower inbred lines to differentiate races of the parasite under glasshouse conditions. Molecular diversity among and within 27 parasite populations was studied by RAPD‐PCR, UPGMA and amova analyses. Highly virulent race F was identified in Hungary, Spain and Turkey. The most virulent race (G) was also found in Turkey. The molecular analysis among highly virulent populations of O. cumana identified four molecular clusters, respectively, grouping populations from Central Spain, Hungary, South Spain and Turkey. The genetic homogeneity within parasite populations was confirmed, since no molecular divergences were found within them. This work constitutes the first geographical study of O. cumana together with pathogenicity and molecular traits inherent to each geographical group, and provides useful information for possible phylogenetic analyses of O. cumana. In addition, molecular markers associated with geographical origin could be developed and used as diagnostic tools to track new broomrape introductions into areas free of virulent races where they might represent a threat to sunflower production. 相似文献