首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of crop genotype and sowing time on competition between safflower (Carthamus tinctorius L.) and weeds were investigated in a 2-year field study. Each year, safflower was grown as a pure stand and in mixture with a natural weed infestation, mostly represented by Polygonum aviculare L., Fallopia convolvulus (L.) A. Löve and Chenopodium album L., in an additive design including weed stands grown without the crop. Grain yield reduction ranged from about 50% to 80% depending on crop genotype, and was higher under spring sowing (mid-March) than under winter sowing (mid-February). In general, those genotypes incurring the least yield reduction gave the greatest suppression of weed biomass. More competitive genotypes also tended to reduce the proportion of C. album in the weed biomass at harvest, particularly in 1994 (the wetter growing season). The competitive ability of the crop was mainly correlated with its biomass at early growth stages, but was not related to its grain-yielding ability in the absence of weeds. Results showed that more competitive crops may be obtained by sowing the most competitive genotypes early. Selecting for higher competitive ability in safflower does not seem to imply a reduction in grain-yielding ability.  相似文献   

2.
Growing chick‐pea in sustainable systems requires the use and development of more competitive genotypes which can complement the effects of reduced input weed control. A 2‐year study assessed the competitive ability of 13 genotypes grown in either the presence or absence of weeds, in a split‐plot design including the weeds in pure stands. Crop and weed density, phenology, relative biomass of crop (RBc) and weeds (RBw), crop yield characters, crop biometric traits in the absence of weeds, relative biomass total of mixtures (RBT) and crop competitive ability (Cb = ln RBc/RBw) were recorded. Lines C136, C120, C101 and C106, and cultivars Pascià, Visir and Sultano gave the best seed yield in the absence of weeds (1.8–2.0 t ha?1 DM). Weeds reduced yield by 75% and 83% in C136 and C133 and by 87–97% in the other genotypes. Weed biomass in mixture (mainly Chenopodium album) averaged 4.42 t ha?1 DM. Chick‐pea genotypes C136 and C133 were the most competitive, but weeds were more competitive than any of the chick‐peas. Cb was correlated directly to the height of first fertile pod (r2 = 0.84) and inversely to the insertion angle of primary branches to the vertical (r2 = 0.77). Intergenotypic variation for competitive ability could be exploited in integrated weed control using more competitive genotypes, or used in breeding programmes aimed to develop highly competitive cultivars on the basis of easily screenable characters.  相似文献   

3.
The competitive abilities of a wide range of genotypes of wheat (Trilicvm aestivum L.) and durum wheat (Triticum durum Desf.) against Lolium rigidum Gaud, (annual ryegrass) were examined 1o determine the potential for breeders to select strongly competitive varieties, Considerable potential within the wheat genome to breed varieties with greater competitive ability was demonstrated. In 1993, 250 genotypes from around the world were screened and in 1994 a subset of 45 (mainly Australian) genotypes were further examined. A uniform density of L. rigidum reduced grain yield of wheat by up to about 80% in 1993 and to 50% in 1994, depending on wheat genotype. Reduction in grain yield was correlated with L. rigidum dry matter. Wheats varied in competitive ability with source, and durum wheats were less competitive than T. aestivum. The ‘old’ standard wheat varieties (released between 1880 and 1950) suppressed the weed more than all the current varieties, with the exception of eight F1 hybrids. A doubling of the crop seeding rate of 10 of the genotypes in 1994 reduced the biomass of L. rigidum by an average of 25% compared with the standard seeding rate. Ranking of competitive ability of varieties at high density was consistent at both seeding rates. The strongly competitive genotypes had high early biomass accumulation, large numbers of tillers, and were tall with extensive leaf display. The potential for breeding enhanced competitive ability in wheat is discussed.  相似文献   

4.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

5.
Competitiveness against grass weeds in field pea genotypes   总被引:1,自引:0,他引:1  
Summary Field pea is an important pulse crop in southern Australia, but its competitiveness against weeds is low. Two experiments were conducted in consecutive years to examine the ability of different genotypes to compete against grass weeds. Field pea was grown in the presence or absence of Lolium rigidum or wheat. In each experiment significant genotypic differences in field pea competitiveness occurred and some genotypes had consistently high or low levels of competitiveness in both years. Tall genotypes generally suppressed L. rigidum and wheat more effectively than short genotypes. Leaf type (conventional, semileafless or tare-leaf) only affected competitiveness before flowering and had no effect on yield loss from weed competition. Maturity had little effect on competitive ability. A genotype × environment analysis for competitive ability showed that there was considerable variation in the response to the level of competition (environment) as well as in mean competitiveness among field pea genotypes. Using wheat as a weed identified genotypic differences in field peas more effectively and more consistently than using L. rigidum . Visual assessment of wheat growth with field pea was strongly correlated with a specific genotype's competitiveness, which may form the basis of a simple field-based screening method for competitive ability.  相似文献   

6.
The susceptibility/resistance to Aphanomyces euteiches of various genotypes (cultivars and breeding lines) of several grain legume species was assessed in controlled conditions. A total of 279 genotypes from the major grain legumes grown in temperate climates (faba bean, chickpea, lentil, lupin and common vetch) and three other legumes frequently cultivated in France (French bean, clover and alfalfa) were screened with one pea-infecting isolate from France. Four different categories of susceptibility/resistance were identified among the legume species/cultivars tested with the pea A. euteiches isolate: (1) susceptible legume species (lentil, alfalfa, French bean) among which low levels of partial resistance was observed; (2) legume species including susceptible genotypes and genotypes with high levels of resistance (common vetch, faba bean and clover), (3) species with a very high level of resistance (chickpea) and (4) species displaying no symptoms (lupin). It is therefore important to consider pathogen-species and pathogen-genotype interactions when defining the host specificity of A. euteiches and considering the possible role of different legume species in increasing or decreasing the soil inoculum potential.  相似文献   

7.
Crop variety effects on herbicide performance is not well characterised, particularly for sweet corn, a crop that varies greatly among hybrids in competitive ability with weeds. Field studies were used to determine the effects of crop competitive ability on season‐long herbicide performance in sweet corn. Two sethoxydim‐tolerant sweet corn hybrids were grown in the presence of Panicum miliaceum and plots were treated post‐emergence with a range of sethoxydim doses. Significant differences in height, leaf area index and intercepted light were observed between hybrids near anthesis. Across a range of sub‐lethal herbicide doses, the denser canopy hybrid Rocker suppressed P. miliaceum shoot biomass and fecundity to a greater extent than the hybrid Cahill. Yield of sweet corn improved to the level of the weed‐free control with increasing sethoxydim dose. The indirect effect of herbicide dose on crop yield, mediated through P. miliaceum biomass reduction, was significant for all of the Cahill’s yield traits but not Rocker. These results indicate that a less competitive hybrid requires relatively more weed suppression by the herbicide to not only reduce weed growth and seed production, but also to maintain yield. Sweet corn competitive ability consistently influences season‐long herbicide performance.  相似文献   

8.
The effect of early and late sowing dates on the establishment of Orobanche crenata Forsk. (crenate broomrape) in resistant and susceptible cultivars of faba bean (Vicia faba L.) and vetch (Vicia sativa L.) were studied over four seasons in southern Spain. Differences in establishment, development and shoot emergence of the parasite were compared. With resistant faba bean and vetch cultivars, there was reduced attachment and shoot emergence of O. crenata with all sowing dates. Susceptible cultivars were more severely affected by the parasite with early sowing. Orobanche crenata development was also delayed in resistant cultivars. Crop yield, estimated by the number of pods per plant, decreased with late sowings. The combined use of resistant cultivars and early sowing is a useful tool as part of an integrated control strategy. Resistant cultivars allow early sowing (with low O. crenata attack), thus avoiding yield losses due to the short crop cycle with late sowing.  相似文献   

9.
Weed suppression characteristics of different winter cereal species and cultivars were studied in two field experiments in two successive years. Two cultivars each of barley, oats and wheat were studied using the weed Galium aparine L. at a range of densities. Significant differences were found in the suppressive abilities of the crop species: oats being the most suppressive, followed by barley and then wheat. Percentage yield loss was related to G. aparine density using a rectangular hyperbolic model. In 1995–96, significant differences between the two wheat cultivars were found, with cv. Avalon being able to suppress G. aparine growth much more effectively than cv. Spark. However, in 1996–97, high rainfall in May, June and July enabled G. aparine to escape suppression by the cultivars. Cultivar competitive ability was associated with high overall leaf area, resistance to loss of tillers under competitive pressure, greater height, canopy structure and development. The oat cultivars were more competitive at early growth stages than could be accounted for by their canopy structure; the possible contribution of allelopathic exudates to their suppressive ability is discussed.  相似文献   

10.
The influence of weedy field strips on the abundance patterns of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and predatory bugs of Orius spp. (Hemiptera: Anthocoridae), on faba bean and on weeds was investigated in Adana province, Turkey, during 2005–2006. There were two treatments: in one treatment, weeds at the margins and inside the plots were regularly controlled by tillage; in the other treatment no weed control was done. Thrips and Orius were sampled by beating faba bean plants and weeds. Orius niger (Wolff) was the most abundant predatory insect species in faba bean and flowering weeds, with numbers of adults and nymphs significantly greater in plots with weedy margins than in weed-free plots. Flowering weeds did not contribute to the abundance of F. occidentalis on faba bean. Abundance of adults of Orius spp. did not coincide with the abundance of F. occidentalis on faba bean or weeds. There were significant negative associations for numbers of Orius spp. among faba bean and the weed species Lamium amplexicaule L. or Sinapis arvensis L. (P < 0.05), indicating movement of Orius individuals from the weeds to faba bean during March–April. Finally, faba bean and weeds may provide some benefits to predators, such as nectar, pollen, shelter and egg-laying sites rather than as sources of insect prey. Cultivation of faba bean could be useful for conservation and augmentation of beneficial insects, including Orius spp. Furthermore, field margins bearing flowering weeds such as S. arvensis and L amplexicaule should be protected against destructive management practices, because they host considerable numbers of the Orius species.  相似文献   

11.
Weeds that emerge along with or immediately after crop plants usually can reduce the yield of those crops. Two randomized complete block design experiments were conducted during 2006 and 2007 in Tabriz, Iran to determine the critical period of redroot pigweed control in the green bean hybrid “Cantander”. The treatments were weed‐infested and weed‐free plots at 2, 4, 6, 8, 10, and 14 weeks after bean emergence (WABE). The green bean biomass was affected by the early emergence of redroot pigweed, but it was not reduced when redroot pigweed emerged at 10 weeks after crop emergence, along with crop emergence, and grew with green bean until 4 WABE. The redroot pigweed biomass decreased by 2.7 g m?2 per day when weed emergence was delayed. Each 100 g m?2 of weed biomass that was produced resulted in a 1.4 kg ha?1 loss in the green bean yield. When redroot pigweed interference lasted for ≥4 weeks after green bean emergence, the green bean yield was reduced significantly. Weeds, which emerged 2 weeks after green bean and thereafter were controlled, did not decrease crop productivity significantly. The highest crop yield was obtained when the weed emerged at 14 WABE. The critical period of redroot pigweed control, considering a 10% yield loss, was between 19 and 55 days after green bean emergence. Thus, weed control practises should be begun no later than 3 WABE and should continue until at least 8 WABE in order to obtain the maximum green bean yield.  相似文献   

12.
Selection within populations of Phytophthora infestans was investigated by comparing the aggressiveness of single‐lesion isolates on detached leaflets of four potato cultivars with differing levels of race‐nonspecific resistance to P. infestans. The isolates included 23 representative of Northern Ireland genotypes from the early 2000s, used to inoculate previously reported field trials on competitive selection (2003–2005), plus 12 isolates recovered from the 2003 trial. The cultivars were those planted in the previous trials: Atlantic (blight‐susceptible) and Santé, Milagro and Stirling (partially resistant). Very highly significant variation for latent period, infection frequency and lesion area was found between genotypes and cultivars; differences between genotypes were more marked on the more resistant cultivars, but no one genotype was the most aggressive across all. Detached leaflets were also inoculated with mixtures of isolates from each genotype group at three sporangial concentrations: differences in aggressiveness between genotypes were more apparent at lower concentrations and on the more resistant cultivars. Genotype groups that were the most aggressive on the more resistant cultivars tended to be those selected by the same cultivars in the field. A mixture of all isolates of all genotypes was used to inoculate detached leaflets of the same cultivars. With one exception, single spore isolates recovered from any one leaflet belonged to a single genotype, but different genotypes were recovered from different cultivars. Phytophthora infestans isolates from Northern Ireland showed significant variation for foliar aggressiveness, and pathogen genotypes exhibited differential aggressiveness to partially resistant cultivars and interacted competitively in genotype selection.  相似文献   

13.
Competitive crop cultivars offer a potentially cheap option to include in integrated weed management strategies (IWM). Although cultivars with high competitive potential have been identified amongst cereal crops, competitiveness has not traditionally been considered a priority for breeding or farmer cultivar choice. The challenge of managing herbicide‐resistant weed populations has, however, renewed interest in cultural weed control options, including competitive cultivars. We evaluated the current understanding of the traits that explain variability in competitive ability between cultivars, the relationship between suppression of weed neighbours and tolerance of their presence and the existence of trade‐offs between competitive ability and yield in weed‐free scenarios. A large number of relationships between competitive ability and plant traits have been reported in the literature, including plant height, speed of development, canopy architecture and partitioning of resources. There is uncertainty over the relationship between suppressive ability and tolerance, although tolerance is a less stable trait over seasons and locations. To realise the potential of competitive crop cultivars as a tool in IWM, a quick and simple‐to‐use protocol for assessing the competitive potential of new cultivars is required; it is likely that this will not be based on a single trait, but will need to capture the combined effect of multiple traits. A way needs to be found to make this information accessible to farmers, so that competitive cultivars can be better integrated into their weed control programmes.  相似文献   

14.
The interactions between the root parasitic weed Orobanche crenata Forsk. and its host plant faba bean ( Vicia faba L.) were quantified under controlled and field conditions at ICARDA's Tel Hadya research station. In the field experiments conducted in 1993–94 and 1994–95 faba beans were sown on two dates, in plots with 0, 50, 200 and 600 O. crenata seeds kg–1 soil, under both limited and sufficient moisture supply. The effects of temperature on the duration of the early developmental stages of O. crenata were investigated in a growth chamber. The extent of O. crenata infestation was closely related to the number of parasite seeds in the soil. The seed-density treatment with 600 seeds kg–1 soil resulted in complete crop failure. Furthermore, O. crenata infestation was higher under sufficient than under limiting water supply conditions, irrespective of sowing date. Only in the moderately infested plots, did shifting of the planting time of faba bean result in a significant decrease in parasite dry weight and an increase in crop seed yield. The timing of germination, attachment and further developmental stages of O. crenata was not related to faba bean growth stage and was affected primarily by soil temperature. The duration of O. crenata developmental stages was estimated using the thermal time concept. The relationship between total number of parasite attachments at the harvest of the faba bean crop and O. crenata seed density was dependent on maximum faba bean root-length density measured by the start of pod-filling in each treatment combination of sowing date and moisture supply. The results are discussed with reference to implications for the development of a dynamic simulation model for the prediction of faba bean yield losses caused by O. crenata .  相似文献   

15.
The interference of wild onion with various densities of lentil and chickpea and its management through competitive cropping were studied under field conditions from 2001–2002 and 2002–2003 at Jabalpur, India. The observed yield loss and predicted yield loss related to wild onion indicated that wild onion was less competitive with chickpea than with lentil. As a result of intraspecies competition, the dry weight and number of seeds per plant for wild onion were reduced with increasing density. The suppressing effect of different crops on the seed rain of wild onion was in the order of pea > mustard > wheat > chickpea > linseed > lentil > French bean. Wheat, pea, and mustard were the most competitive crops against wild onion. The high shading ability of these crops was thought to contribute to the suppression of wild onion. French bean offered the least suppression while chickpea, linseed, and lentil showed moderate weed suppression.  相似文献   

16.
Uromyces viciae-fabae, rust of faba bean, parasitizes other legume crops such as lentils (Lens culinaris) and field peas (Pisum sativum) in some environments. In this study we examined the host range of two Australian isolates of U. viciae-fabae collected and purified from a faba bean crop and classified as U. viciae-fabae ex V. faba. Field pea (P. sativum), chickpea (Cicer arientinum), lupin (Lupinus spp.), lentil (L. culinaris), and mung bean (Vigna radiata) genotypes were tested with these isolates, as well as resistant and susceptible genotypes of the faba bean host. Race specificity for these two pathogen isolates was observed on Vicia faba, with two faba bean genotypes showing partial resistance. Both U. viciae-fabae isolates also colonized field pea seedlings and successfully produced uredinia under glasshouse conditions, despite this fungus not being known as a pathogen of Australian field pea crops. No sporulation of either isolate of U. viciae-fabae ex V. faba was observed on any of the remaining legume species tested. However, obvious differences in fungal growth were observed, ranging from small infection sites with very rare haustorium formation in mung bean to more extensive growth and the development of potential uredinial structures in chickpea. These observations are discussed in relation to the phylogenetic relationship of these host and nonhost species.  相似文献   

17.
The performance of three empirical models describing white bean yield loss (YL) from common ragweed competition was compared using field experiments from Staffa and Woodstock, both in Ontario, Canada, in 1991 and 1992. One model was based upon both weed density and relative time of emergence. The other two models described yield loss as a function of weed leaf area relative to the crop. The model based on both weed density and relative time of emergence best described the data sets. The predicted maximum yield loss (A) and the parameter for relative time of weed emergence (C) varied across locations and years whereas the yield loss at low weed density (I) was relatively more consistent across locations and years. Use of thermal time (base temperature=10oC) rather than calendar days did not change the overall fit of the model, but reduced the value of the parameter for the relative time of weed emergence (C). The two parameter leaf area model accounting for maximum yield loss (m) gave a better fit to the data compared with the one parameter model. The relative damage coefficient (q) varied with time of leaf area assessment, location and year. Values of q calculated from relative leaf area growth rates of the crop and weed were similar to observed values. The relationship between q and accumulated thermal time was linear but varied with location and year. As management tools, models based upon relative leaf area have advantages over models based on density and relative time of emergence since the level of weed infestation needs only to be assessed once, whereas density and emergence time require frequent observations. The ability to assess accurately and quickly both the crop and weed leaf area, however, may limit the practical application of models based on leaf area. The inability of empirical models to account for year–to–year variation in environmental conditions was observed.  相似文献   

18.
The competitive abilities of eight winter crops were compared against Lolium rigidum Gaud, (annual ryegrass), an important weed of southern Australia, as a potential strategy to suppress weeds and reduce dependence on herbicides. Two cultivars of each species were chosen to represent the range of competitive ability within each crop and grown in field experiments in 1992 and 1993. The order of decreasing competitive ability (with the ranges of percentage yield reduction from L. rigidum at 300 plants m?2 in parenthesis) was as follows: oats (Avena sativa L.), 2–14%; cereal rye (Secale cereale L.), 14–20%; and triticale (×Triticosecale), 5–24%; followed by oilseed rape, (Brassica napus L.), 9–30%; spring wheat (Triticum aestivum L.), 22–40%; spring barley (Hordeum vulgare L.), 10–55%; and, lastly, field pea (Pisum sativum L.), 100%, and lupin (Lupinus angustifolius L.), 100%. Differences in competitive ability of cultivars within each species were identified, but competition was strongly influenced by seasonal conditions. Competition for nutrients (N, P and K) and light was demonstrated. L. rigidum dry matter and seed production were negatively correlated with grain yield of the weedy crops. More competitive crops offer the potential to suppress grass weeds while maintaining acceptable grain yields. Ways of improving the competitive abilities of grain legume crops are discussed.  相似文献   

19.
Different races of the parasitic Orobanche cumana (sunflower broomrape) have been reported in Spain, race F being the most virulent. Full resistance in sunflower to races A–E is achieved with each of the single major genes Or1 to Or5 respectively. However, parasitised hybrids allegedly resistant to race F were observed in early 2002. The purpose of this study was to verify broomrape incidences (BI) on resistant sunflower genotypes, to assess the mixture of races within field populations and to test for partial resistance to race F in the sunflower hybrids showing a low degree of attack (DA) by the weed. Tests were conducted under field conditions in two locations of southern Spain. While no significant differences were found for yield and BI between locations, the DA on the cultivars depended on the location. With high infection levels and significantly lower yield in susceptible controls, marked differences in BI and DA were found within resistant cultivars, but all of them showed similar crop yield. When artificially inoculated with several populations of race F, line P96 and mainly line L86, were consistently slightly infected, suggesting they were inbred lines responsible for horizontal resistance in infested fields. L86 was extremely susceptible to race E populations, which is unusual as sunflower resistance to one race provided resistance to all the previously described races of O. cumana. No different virulences were detected within two groups of subpopulations (races E and F) inoculated onto resistant sunflower genotypes. However, race F subpopulations showed significant differences in aggressiveness, which seems to be related to horizontal (multigenic) resistance of the crop to the parasitic weed.  相似文献   

20.
The potential of oilseed rape to suppress weed growth while maintaining optimal yield and quality is not well understood under field conditions in Australia. This study, conducted in Condobolin and Wagga Wagga, New South Wales (NSW), during 2015 and 2016, examined a diverse range of commercial oilseed rape cultivars for their inherent ability to suppress weeds and maintain yields when in competition with natural weed infestations, with and without pre-emergent herbicide treatment. Cultivar differences were observed in oilseed rape canopy architecture and yield; however, early-season biomass, light interception, leaf area index and visual vigour ratings exhibited both year and location interactions. Cultivars with the highest biomass, light interception, leaf area indices and visual vigour were typically also the most weed-suppressive, in particular GT-50 and Hyola 600RR. Although crop and weed biomass accumulation differed significantly among cultivars for both location and year, weed biomass was inversely related to cultivar biomass in both years and locations. Hybrid Hyola and GT-50 cultivars exhibited up to 50% less weed biomass while maintaining consistently high levels of dry crop biomass. In addition, pre-emergent herbicide applications reduced weed infestation and contributed to higher crop yield in both locations and years. Given the consistent aboveground competitive ability of certain oilseed rape cultivars, our study demonstrated that diverse cultivar-dependent competitive traits such as early growth vigour, biomass production, absorption of photosynthetically active radiation and production and retention of crop residue significantly impacted weed establishment and total weed biomass. Our findings suggest that cultivar selection offers potential as a tool for maintaining suitable grain yield in the presence of weeds while potentially delaying the development of herbicide resistance through efficacious weed suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号