首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to compare the diversity in seed production and the soil seed bank in a dryland and an irrigated agroecosystem in the dry tropics. Both agroecosystems showed a comparable number of species, but only 25% and 38% similarity during the winter and rainy cropping seasons, respectively. In the irrigated agroecosystem, the amount of seed production diversity was almost double in the winter season, compared to the rainy season. The weed seedbank diversity was low but was sensitive to cropping practices and seasons in both agroecosystems. A considerably smaller soil seedbank size in the irrigated agroecosystem (cf. dryland) was related to lowered weed seed production. The dryland agroecosystem showed a greater accumulation of the seeds of broad‐leaved weeds, whereas the irrigated agroecosystem accumulated more seeds of the grasses or sedges. About three‐fourths of the seeds during the winter season were accounted for by Anagallis arvensis and Chenopodium album in the dryland agroecosystem and by C. album and Melilotus indica in the irrigated agroecosystem. However, during the rainy season, Ammannia baccifera, Echinochloa colona and Cyperus rotundus dominated in both agroecosystems. The changes in the weed seed bank and its diversity are mainly attributed to differences in water management, which tends to reduce species diversity, especially at a lower depth, but leads to the dominance of some potentially noxious weeds (e.g. Phalaris minor and M. indica). Approximately double the soil seedbank size and a greater diversity at a lower depth might indicate an adaptive mechanism in the storage of weed seeds in the dryland agroecosystem.  相似文献   

2.
Weed infestations are a major cause of yield reduction in rice (Oryza sativa) cultivation, particularly with direct‐seeding methods, but the relationship between weed dynamics and water availability in Cambodian paddy fields has not been documented previously. We surveyed the weed abundance and weed seed banks in the soil of paddy fields with inferred differences in their water regime in 22 farm fields in three provinces of Cambodia in the 2005 and 2006 rainy seasons. We studied rain‐fed lowland fields in upslope and downslope topographic positions and fields at different distances from the irrigation water source inside an irrigation rehabilitation area. The weed seed banks were estimated by seedling emergence in small containers and weed abundance and vigor were estimated by a simple scoring system. The estimated weed seed bank in the top 5 cm of soil ranged from 52.1 to 167 × 103 seeds m?2 (overall mean of 8.5 × 103 seeds m?2) and contained a high proportion (86%) of sedge species, such as Fimbristylis miliacea L. and Cyperus difformis. Several fields had particularly large seed banks, including one near the reservoir. No clear difference was found in the weed seed banks between the irrigated fields that were located close to (upstream) and distant from (downstream) the water source or between the irrigated and rain‐fed lowland fields, but the weed scores were larger in the rain‐fed fields and the downstream fields within the irrigated area. A water shortage during the late growing season in 2005 led to a proliferation of weeds in some fields and an associated increase in weed seedbank size in 2006. However, the weed scores in 2006 were more strongly associated with that year's water conditions than with the weed seedbank size.  相似文献   

3.
Correlation between the soil seed bank and weed populations in maize fields   总被引:1,自引:0,他引:1  
Annual weed populations establish every year from persistent seed banks in the soil. This 3 year study investigated the relationship between the number of weed seeds in the soil seed bank and the resultant populations of major broadleaf and grass weeds in 30 maize fields. After planting the crop, 1 m2 areas were protected from the pre-emergence herbicide application. Soil samples were collected soon after spraying to a depth of 100 mm and the weed seeds therein were enumerated. The emerged weed seedlings in the field sampling areas were counted over the following 8 weeks. Up to 67 broadleaf species and five grass weeds were identified, although not all were found at every site and some were specific to a region or soil type. For the most abundant weeds in the field plots, on average 2.1–8.2% of the seeds of the broadleaf species and 6.2–11.9% of the seeds of the grass weeds in the soil seed bank emerged in any one year, depending on the species. Overall, the results showed a strong linear relationship between the seed numbers in the soil and the seedling numbers in the field for all the grasses and for most broadleaf weeds. For some species, like Trifolium repens , only a weak relationship was observed. In the case of Chenopodium album , which had the largest seed bank, there was evidence of asymptotic behavior, with seedling emergence leveling off at high seed numbers. An estimate of the soil seed bank combined with knowledge of the germination and behavior of specific weed species would thus have good potential for predicting future weed infestations in maize fields.  相似文献   

4.
The aim of this study was to assess the effects of crop management practices on the diversity, structure, and composition of weed communities. A total of 30 fields (15 fields each) in low‐input and conventional farming systems were surveyed in north‐eastern Iran. In the conventional cropping system, both mineral fertilizers and herbicides were applied, while in the low‐input cropping system, the fertilizer was mainly manure and herbicides were avoided. The results showed that the pool of species, species richness, number of unique species, and Shannon's diversity index were greater in the low‐input system than in the conventional system. Both cropping systems had more broad‐leaved species than grasses and more annual species than perennial species. All the multivariate methods of analysis that were applied revealed that the weed community composition was significantly different between the two management types. The low‐input cropping favored herbicide‐susceptible broad‐leaved weeds, legumes, and weeds with biodiversity value, whereas a high proportion of herbicide‐tolerant grasses was found in the conventional fields. The results suggest that low‐input cropping can sustain high weed diversity and abundance.  相似文献   

5.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

6.
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton–sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0–15 and 15–30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0–15 and 15–30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus‐galli seeds in the 15–30 cm soil horizon compared with the other tillage regimes. Total seedbank (0–30 cm) of P. oleracea was significantly reduced in cotton–sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus‐galli. Total seed densities of most annual broad‐leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus‐galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring‐germinating grass weed species, but also prevents establishment of summer‐germinating weed species by the early developing crop canopy.  相似文献   

7.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

8.
Crop variety effects on herbicide performance is not well characterised, particularly for sweet corn, a crop that varies greatly among hybrids in competitive ability with weeds. Field studies were used to determine the effects of crop competitive ability on season‐long herbicide performance in sweet corn. Two sethoxydim‐tolerant sweet corn hybrids were grown in the presence of Panicum miliaceum and plots were treated post‐emergence with a range of sethoxydim doses. Significant differences in height, leaf area index and intercepted light were observed between hybrids near anthesis. Across a range of sub‐lethal herbicide doses, the denser canopy hybrid Rocker suppressed P. miliaceum shoot biomass and fecundity to a greater extent than the hybrid Cahill. Yield of sweet corn improved to the level of the weed‐free control with increasing sethoxydim dose. The indirect effect of herbicide dose on crop yield, mediated through P. miliaceum biomass reduction, was significant for all of the Cahill’s yield traits but not Rocker. These results indicate that a less competitive hybrid requires relatively more weed suppression by the herbicide to not only reduce weed growth and seed production, but also to maintain yield. Sweet corn competitive ability consistently influences season‐long herbicide performance.  相似文献   

9.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

10.
Abstract

Two field experiments on chemical weed control in Faro 41 upland rice (Oryza sativa L.) variety were conducted at a rainforest site near the National Cereals Research Institute, Amakama Substation in 1989 and 1990. The herbicides tested were a coformulated mixture of pretilachlor and dimethametryne at 1.5, 2.0 and 2.5 kg a.i./ha, a co‐formulated mixture of piperophos and propanil applied at 3.16 and 3.95 kg a.i./ha, and Oxadiazon at 1.0 kg a.i./ha. Two hand weedings and a ‘no weeding’ treatment were included. The herbicides were applied 5 days after planting. All were safely selective to the crop. Most provided adequate weed control through 8–12 weeks after planting. Weeds controlled included Cynodon dactylon, Commelina benghalensis, Dlgitaria horizontalis, Eleusine indica, Panicum maximum and Pennisetum purpureum as grass weeds. The broadleaf weeds were Emilia sonchifolia, Ageratum conyzoides, Portulaca oleraceae, Richardia brasiliensis and Ipomoea Involuncrata. The sedges Mariscus alternifolius and Cyperus esculentus were encountered in the plots. Pretilachlordimethametryne at 2.5 kg a.i./ha had the best weeding score. Twoyear average grain yields of 1.7–2.6 t/ha were obtained from the herbicide treatments. With only 0.4 t/ha from the unweeded treatment, yield losses of more than 80% were recorded.  相似文献   

11.
Understanding how weed communities assemble as a function of biotic and abiotic filters and transform through time has important implications for the sustainable management of agronomic systems. In a three‐year study, we evaluated weed community responses to lucerne (Medicago sativa, perennial) vs. continuous spring wheat (Triticum aestivum, annual, CSW) and weed management practices where weeds in the CSW system were managed with three contrasting approaches (herbicide, tillage or sheep grazing). Our results indicated no differences in weed diversity between the perennial and annual crops or across the different management practices in CSW. However, there were differences in weed community composition. Lucerne, with the exception of the establishing year, impeded the growth and reproduction of several annual weeds, including Amaranthus retroflexus, Thlaspi arvense, Lamium amplexicaule and Chenopodium album, but favoured perennial broad‐leaved weeds such as Taraxacum officinale and Cirsium arvense. The replacement of herbicide treatments in pre‐plant and post‐harvest in CSW with soil tillage or sheep grazing selected for different weed communities beyond the second year of establishment. The weed species driving the differences in CSW systems were Androsace occidentalis, more common in CSW managed chemically; Asperugo procumbens, more common in CSW managed with tillage; and T. officinale and Lactuca serriola, more common in CSW managed with sheep grazing. Understanding how cropping systems modify weed communities is a necessary step to shift from reactive weed control programmes to predictive management strategies.  相似文献   

12.
In 393 field experiments in Baden‐Württemberg region in south‐western Germany, herbicide efficacy, yield loss and crop tolerance of maize (Zea mays) were investigated between 1981 and 2011. The collected data served to determine changes in weed frequencies, in herbicide use, yield loss functions and economic thresholds (ETs). Over 60 weed species were reported. Chenopodium album and Galium aparine were the most frequent broad‐leaved weeds, the former becoming more frequent over time. Species of the genera Lamium, Polygonum, Veronica and Matricaria occurred in about every fifth trial. Alopecurus myosuroides and Echinochloa crus‐galli were the most frequent grass weeds; the former declining in frequency by 1.1% per year, the latter increasing by 1.5%. Results suggest a weed population shift towards thermophilic species. aceto‐lactate‐synthase and 4‐HPPD‐inhibitor herbicides became important in the 1990s. Pendimethalin and bromoxynil have been integral components of weed control since the 1980s. ETs, the point at which weed control operations provide economic returns over input costs, ranged between 3.7% and 5.8% relative weed coverage. Without weed control, no yield increase was found over 24 years. Yield increased by 0.2 t ha ? 1 year ? 1, if weeds were controlled chemically. Despite intensive use of effective herbicides in maize, problematic weed species abundance and yield losses due to weed competition have increased in Baden‐Württemberg over a period of 30 years.  相似文献   

13.
不同稻田综合种养模式下杂草长期控制效果的调查   总被引:1,自引:0,他引:1  
为明确稻田综合种养模式是否可以长期有效控制杂草危害,通过对江苏省48个样点共6种综合种养模式(稻鸭、稻蟹、稻虾、稻鱼、稻鳖和稻鳅/鳝共作)农田的杂草群落和土壤种子库进行调查,比较分析杂草群落综合草情优势度、物种多样性以及杂草群落和土壤种子库的组成和变化。结果表明,在综合种养模式实施1~3年,杂草群落综合草情优势度和土壤种子库密度均明显下降,其中稻鸭共作模式下两者均下降最多,其次是稻虾共作模式下杂草群落综合草情优势度下降较多,而稻鱼共作模式下土壤种子库密度下降较多。实施4~5年,各种养模式下杂草群落综合草情优势度和土壤种子库密度均上升,草害加剧,杂草防控效果下降;其中稻鳅/鳝共作模式下杂草群落综合草情优势度和土壤种子库密度与常规稻田相比升幅最大,分别上升28.8%和25.3%;由于稻鳖、稻鳅/鳝共作模式实施均未超过5年,在实施4~5年时整体上杂草危害最为严重,禾本科杂草、阔叶杂草以及莎草科杂草的综合草情优势度较常规稻田分别上升42.4%、12.3%、0.7%和31.5%、27.7%、38.1%。实施5年以上,稻鸭共作模式下阔叶杂草的综合草情优势度较常规稻田下降65.0%,但禾本科杂草的综合草情优势度和土壤种子库密度较常规稻田分别上升80.5%和66.6%,成为杂草群落和土壤种子库的优势种群;稻虾共作模式下莎草科杂草和阔叶杂草的综合草情优势度较常规稻田分别上升17.8%和45.0%;稻蟹共作模式下莎草科杂草、阔叶杂草和禾本科杂草的综合草情优势度较常规稻田分别上升22.7%、35.3%和29.0%。表明当长期实施同种稻田综合种养模式时,杂草群落在单一的选择压力下会加快演替,杂草危害均呈先降后升的变化趋势,不利于田间杂草的长效防控,建议实施针对耗竭土壤种子库的综合技术措施。  相似文献   

14.
Conyza bonariensis is a major weed infesting zero‐tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C. bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C. bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad‐leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C. bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5–15 cm diameter) were treated, compared with small rosettes (<5 cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C. bonariensis in wheat consistently (83–100%): 2,4‐D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4‐D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C. bonariensis will have a less adverse impact on the following fallow or crop.  相似文献   

15.
The management of weeds in Malaysian rice fields is very much herbicide‐based. The heavy reliance on herbicide for weed control by many rice‐growers arguably eventually has led to the development and evolution of herbicide‐resistant biotypes in Malaysian rice fields over the years. The continuous use of synthetic auxin (phenoxy group) herbicides and acetohydroxyacid synthase‐inhibiting herbicides to control rice weeds was consequential in leading to the emergence and prevalence of resistant weed biotypes. This review discusses the history and confirmed cases and incidence of herbicide‐resistant weeds in Malaysian rice fields. It also reviews the Clearfield Production System and its impact on the evolution of herbicide resistance among rice weed species and biotypes. This review also emphasizes the strategies and management options for herbicide‐resistant rice field weeds within the framework of herbicide‐based integrated weed management. These include the use of optimum tillage practices, certified clean seeds, increased crop competition through high seeding rates, crop rotation, the application of multiple modes of action of herbicides in annual rotations, tank mixtures and sequential applications to enable a broad spectrum of weed control, increase the selective control of noxious weed species in a field and help to delay the resistance evolution by reducing the selection pressure that is forced on those weed populations by a specific herbicidal mode of action.  相似文献   

16.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

17.
Herbicides contribute significantly to agricultural intensification, but some negatively impact non‐target organisms. Much research has focused on reducing herbicide use through technological improvements in application and herbicide selectivity, but impacts on non‐target organisms are less well understood. Using experimental plots in silage systems, we investigated impacts of herbicides (both narrow spectrum targeting broad‐leaved plants and selective and non‐selective broad spectrum) applied using traditional techniques (blanket‐ and manual spot‐spraying) and a novel application technique (automated spot‐spraying) on non‐target plant richness/diversity, target weed presence (Rumex species) and production (DM yield). All herbicides reduced non‐target plant richness/diversity and sometimes target weeds (when applied using traditional methods). Automated spot‐spraying had fewer negative effects on non‐target organisms, but did not reduce target weeds. No differences in production levels among treatments were observed. The automated spot‐spraying technique requires further research and development. Our results indicate that 20–30% weed cover does not significantly alter production and so, as herbicides are expensive, their effects on non‐target organisms and the environment can be more significant than their benefits to production. We advocate more research into the relationships between weed infestation and production in grasslands, so that the propensity to overuse herbicides is reduced.  相似文献   

18.
The work presented in this study adds to previous research on the occurrence, distribution and growth habitat of common weeds along roadsides in the Mississippi River Delta region of eastern Arkansas, USA. It addresses the relationships between soil properties (i.e. defined as a group of individual soil characteristics or attributes such as P, K, Ca, Mn and other nutrients) and the most agronomically important weeds of which the occurrence at field margins accounted for ≥ 10% of the total sampling sites. These were three broad‐leaved weeds (Amaranthus palmeri, Ipomoea spp. and Sida spinosa) and four grass weeds (Echinochloa crus‐galli, Urochloa platyphylla, Sorghum halepense and Digitaria sanguinalis). Soil properties were used as explanatory variables for weed occurrence (presence–absence) using partition analysis; the occurrences of the weeds under examination were partitioned by the application of a decision‐tree method. The most important soil properties explaining the occurrence of these weeds in field margins were extractable soil nutrients, specifically sodium, boron and copper content, as well as soil physical attributes, in order of importance, bulk density, silt content, field moisture capacity, hydraulic conductivity, wilting point, available water and clay content. Soil chemical properties proved least reliable in explaining weed occurrence at roadside field margins. Knowledge of the relationships between soil properties and weed occurrence can add to our understanding of weed biology and hence enhance the efficiency of weed management strategies. For example, the occurrence of A. palmeri, in soils with high bulk density (>1.4 g cm?3) and low organic matter content (<2.7%) and thus lower residual herbicide activity, will require integrated weed management of this species in field margins. This is of interest given the occurrence of herbicide resistance in roadside arable weeds, mainly A. palmeri, E. crus‐galli and S. halepense, in the Mississippi River Delta region of eastern Arkansas and other parts of the world.  相似文献   

19.
In direct-seeded upland rice (Oryza sativa L.) yield reductions due to weed competition ranged from 42 to 65% in field experiments conducted in eastern Utter Pradash, India. The most critical period, when crop losses due to weed competition were most severe, ranged from 10 to 20 days after emergence. Yields generally continued to increase, however, as the length of the weed-free period increased. The weed flora consisted of various grasses, sedges and broadleaved species. The most effective herbicide treatment evaluated was a pre-emergence application of alachlor followed by a post-emergence application of propanil or one mechanical weeding.  相似文献   

20.
Cambodia has experienced a rapid shift from transplanted to hand broadcast seeded rice, with a consequent increase in seeding rates from 25–30 to 100–200 kg ha?1. To reduce costs, farmers keep their own seed for sowing with the risk of greater weed seed contamination of the sowing seed. A survey of weed seed contamination in harvested rice paddy was conducted in two provinces of Cambodia (Battambang and Takeo) at the end of the wet season in 2016. Farmers were interviewed about rice‐seeding practices, and a total of 110 farmers' fresh paddy samples were inspected for weed seed contamination from the two provinces. Sowing seed samples collected from 28 seed producer lots and 71 samples of farmer‐kept seed were also analysed for weed seed contamination. In both provinces, the majority of farmers kept their own seed or bought seed from a neighbour. Farm‐kept seed for sowing accounted for 88% of sown seed in Battambang and 89% in Takeo. Seeds of 41 different weed species from 13 plant families were found in the farmers' freshly harvested paddy samples. Overall, farmers managed to reduce the number of weed propagules by 60% and seed producers by 95%. There was no significant difference between farmer‐kept seed and seed producer/seed company seed for the total number of weed seeds present. When shown photos, farmers' rankings of the 10 most common weed species found in freshly harvested paddy did not closely correspond to the actual weed seed frequency in the paddy. When farmers were asked to rank the frequency of weeds in their fields without the option to choose from a list, they ranked the weeds differently. Farmers ranked Ischaemum rugosum, Echinochloa spp. and Fimbristylis miliacea as the three most frequent weed species in their fields. The most frequent weeds in harvested paddy, apart from weedy rice, were Irugosum and Melochia corchorifolia. Farmers did not rank M. corchorifolia as a frequently occurring weed, and most farmers could not recognise M. corchorifolia from photographs. The priority for improved seed hygiene is to place the emphasis on assisting farmers to further improve their seed purification techniques and to caution them to inspect seed before purchasing from neighbours, seed producers and seed companies in the absence of the implementation of seed certification regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号