首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Phytoparasitica - Tillage is among the most important soil management practices, which exert strong impacts on weed flora composition in different cropping systems. The large-scale adoption of...  相似文献   

2.
In the conservation agricultural systems practised in Australia, cultivation is not commonly utilised for the purpose of weed control. However, occasional use of tillage (strategic tillage) is implemented every few years for soil amelioration, to address constraints such as acidity, water repellence or soil compaction. Depending on the tillage method, the soil amelioration process buries or disturbs the topsoil. The act of amelioration also changes the soil physical and chemical properties and affects crop growth. While these strategic tillage practices are not usually applied for weed control, they are likely to have an impact on weed seedbank burial, which will in turn affect seed dormancy and seedbank depletion. Strategic tillage impacts on seed burial and soil characteristics will also affect weed emergence, plant survival, competitive ability of weeds against the crop and efficiency of soil applied pre-emergent herbicides. If growers understand the impacts of soil amelioration on weed demography, they can more effectively plan management strategies to apply following the strategic tillage practice. Weed seed burial resulting from a full soil inversion is understood, but for many soil tillage implements, more data is needed on the extent of soil mixing, burial of topsoil and the weed seedbank, physical control of existing weeds and stimulation of emergence following the tillage event. Within the agronomic system, there is no research on optimal timing for a tillage event within the year. There are multiple studies to indicate that strategic tillage can reduce weed density, but in most studies, the weed density increases in subsequent years. This indicates that more research is required on the interaction of amelioration and weed ecology, and optimal weed management strategies following a strategic tillage event to maintain weeds at low densities. However, this review also highlights that, where the impacts of soil amelioration are understood, existing data on weed ecology can be applied to potentially determine impacts of amelioration on weed growth.  相似文献   

3.
4.
A system to grow tomato plants infected by Meloidogyne javanica under constant temperatures of 18, 21, 24, 27 and 30 °C was developed and used to assess how temperature and the application of the biological control bacterium Pasteuria penetrans affected plant growth, the nematode population and endospore production. Each plant was inoculated with 300 second‐stage juveniles (J2) with four or five spores of P. penetrans attached to their cuticles or with 300 nematodes without P. penetrans. Increasing soil temperature increased tomato growth, the number of endospores per female, and the number of galls of M. javanica at the end of 38 days. Increasing temperatures up to 27 °C also increased the number of egg masses produced by M. javanica. Presence of P. penetrans reduced the numbers of galls and egg masses at all temperatures by up to 52.2% and 61.4% at 27 and 30 °C, respectively. Pasteuria penetrans reduced the M. javanica population even at soil temperatures of 18 and 21 °C. However, temperatures of 27 and 30 °C enhanced nematode control and the production of P. penetrans endospores is faster. The system developed in this work is simple and efficient for growing plants under constant temperatures and can be used for different purposes.  相似文献   

5.
Since 1996, transgenic Bacillus thuringiensis(Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research(including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm(Helicoverpa armigera) to the Bt toxins Cry1 Ac and Cry2 Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1 Ac and Cry2 Ab against cotton bollworm are not completely independent, and then propose the "resistance-associated gene mutation potential hypothesis". Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting "pyramid" strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.  相似文献   

6.
Daylily rust fungus, Puccinia hemerocallidis, was proven to host-alternate between a wild daylily, Hemerocallis fulva var. longituba, and a patrinia, Patrinia villosa. No proof was obtained for the early belief that the fungus is pathogenic to plantainlilies, Hosta species, in addition to daylilies, Hemerocallis species. The fungus seems to alternate regularly between daylilies and patrinias in Japan because most daylily species are deciduous, and a vegetatively reproducing stage of the pathogen does not seem capable of successfully overwintering free of the living host tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号