首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomato black ring virus (TBRV) and beet ringspot virus (BRSV) are closely related but distinct members of subgroup B of the genus Nepovirus. Both viruses have broad host ranges and are transmitted by seed, pollen, and ectoparasitic nematodes. Although 13 TBRV and 3 BRSV genome sequences were already available, no attempt has been made to link sequence data from these recent sequences with those of historical isolates studied in the pre-sequencing era. High-throughput sequencing was used to generate eight new TBRV and BRSV genome sequences from three historical >60-year-old and two >30-year-old isolates, and three more recent isolates. These eight isolates were from the Czech Republic, Germany, and the UK. We compared these with all genomes sequenced previously. Intraspecies recombination (three of four TBRV and two of four BRSV isolates) was frequent amongst the eight new genomes. Interspecies recombination was also present within the RNA1 of TBRV isolates BRSV-3393 SG GB and BRSV-9888 ST GB. No satellite RNAs were associated with the eight new genomes. Two commercial enzyme-linked immunosorbent assay (ELISA) kits used to detect TBRV during routine testing differed in that one detected only TBRV and the other only BRSV, so they are likely to provide incorrect but potentially complementary virus occurrence information. We suggest both ELISA kits, or appropriate molecular tests, be used by biosecurity authorities to avoid this problem. This study illustrates the value of sequencing historical isolates preserved from the pre-sequencing era.  相似文献   

2.
Tomato black ring virus (TBRV) is an important pathogen infecting a wide range of plant species worldwide. Phylogenetic studies of TBRV have already been conducted, although limited by the use of short genomic regions or a reduced amount of isolates. In the present study, we carried out an exhaustive phylogenetic and population genetic analysis based on the coat protein gene (CP) sequence of 57 TBRV isolates originating from different host plants and European geographic regions (47 isolates from Poland, 8 from Lithuania, one from the UK, and one from Hungary). Moreover, the selective pressure acting on particular codons and coevolution of amino acid residues in the CP were analysed. The results clearly showed that the TBRV population is being shaped by recombination and both positive and purifying selection. The analyses revealed that the placement of TBRV isolates in the phylogenetic trees was nonrandom, with isolates clustering according to host plant families and geographic origin.  相似文献   

3.
Tomato black ring virus (TBRV) is a worldwide-distributed RNA virus infecting a wide range of different host plants, including crop species, trees, shrubs, and weeds. Here, we investigated the molecular evolution of TBRV and its adaptability to different plant species. The TBRV-Pi isolate was used to generate five independent evolution lineages serially passaged in either quinoa, tobacco, or tomato plants. After 15 passages, the genetic variability present in all the lineages was characterized for the movement (MP) and coat (CP) coding cistrons. We addressed two main questions: to what extent does the amount of genetic variability in the TBRV genome depend on the host species, and are there host species-specific adaptive mutations? Overall, 201 different nucleotide substitutions emerged during the evolution experiment, with some of them appearing multiple times in different lineages; two of them (one in CP and one in MP) were unique for a particular host plant. We have shown that the degree of genetic differentiation depends on the host species in which the virus evolved, and that positive selection is operating upon certain residues, particularly in CP. Moreover, we have characterized new types of defective RNAs that arose during the TBRV-Pi evolution in tobacco. Furthermore, this is the first report of a defective RNA from the RNA2 of TBRV.  相似文献   

4.
ABSTRACT St. Augustine decline is a viral disease caused by Panicum mosaic virus (PMV) alone or in combination with a satellite virus (SPMV) and/or satellite RNAs (satRNAs). A ribonuclease protection assay (RPA) was used to evaluate the genetic diversity of PMV satRNAs isolated from 100 naturally infected St. Augustinegrass plants (Stenotaphrum secundatum). Distinctive satRNA RPA profiles were observed for 40 of 52 samples from College Station (CS) and 37 of 48 samples from Corpus Christi (CC), Texas. A dendrogram constructed from the RPA data revealed that satRNAs were grouped in two distinct clusters based on their place of origin. From 100 samples, only 4 satRNAs from CS were placed in the CC group, and only 2 satRNAs from CC were placed in the CS group. The data show that there is genetic variability in PMV satRNAs in naturally occurring infections, and distinct geographically separate populations can be identified from CC and CS.  相似文献   

5.
ABSTRACT Satellite RNAs (satRNAs) are associated with Cucumber mosaic virus (CMV) in tomato, most often causing severe epidemics of necrotic plants, and not associated with specific host symptoms. Laboratory studies on virus transmission by the aphid vector Aphis gossypii were performed to better understand the dynamics of field populations of CMV. The presence of satRNAs correlated with lower concentrations of virus in infected plants and with a decrease in the efficiency of transmission from satRNA-infected plants. Both the concentration of virus in CMV-infected tomato and the efficiency of transmission varied more extensively with nonnecrogenic satRNAs than with necrogenic satRNAs. A negative effect of satRNAs on virus accumulation can account, in part, for a decrease in the field transmission and recovery of CMV + satRNAs. Aphids behaved differently and probed less readily on plants infected with CMV + necrogenic satRNAs compared with plants containing non-necrogenic satRNAs. Aphid-mediated satRNA-free CMV infections were observed in test plants when aphids were fed on source plants containing CMV + nonnecrogenic satRNA; no comparable satRNA-free test plants occurred when aphids were fed on source plants containing necrogenic satRNAs. These results indicate that factors associated with transmission can be a determinant in the evolution of natural populations of CMV and its satRNA.  相似文献   

6.
Two types of satellite RNAs (XJs1 and XJs2) were found to be associated with the two Cucumber mosaic virus (CMV) beet isolates XJ1 and XJ2 consisting of 384 nucleotides and 336 nucleotides, respectively. Our work showed that XJs1 and XJs2 could attenuate symptoms on Nicotiana glutinosa induced by CMV and the effect of XJs1 on symptoms was stronger than XJs2. Co-inoculation of CMV with XJs1 produced lighter oxidative stress than that with XJs2. Oxygen uptake rates through the alternative pathway in leaves infected with CMV and XJs2 were always higher than that with CMV and XJs1 and lower than infection with CMV alone. The non-photochemical fluorescence quenching (qN) increased more in N. glutinosa infected with CMV and XJs2 than that with CMV and XJs1. The relationship among helper virus, satRNAs and the host plants is discussed. Two closely-related satRNAs from the same plant has not been reported so far. The effects of these two satRNAs on virus-infected N. glutinosa were significantly different. The difference may be caused by deletion and mutation of the satRNAs.  相似文献   

7.
8.
为明确侵染紫丁香Syringa oblata并引起褪绿花叶症状的病毒种类及其基因组分子特征,利用透射电子显微镜对分离自呼和浩特市和哈尔滨市的紫丁香病样中的病毒粒子进行观察,并通过小RNA高通量测序和RT-PCR技术对其进行检测分析。结果表明,在紫丁香显症叶片的病毒粗提液中观察到长约600 nm、宽约13 nm的线状病毒粒子。利用小RNA高通量测序和RT-PCR技术从病样中检测到水蜡A病毒(Ligustrum virus A,LVA),发病率为3.7%。呼和浩特市紫丁香分离物LVA-Sob的基因组序列全长8 525 nt,包含6个开放阅读框,分别编码Rep(1 968 aa)、TGB1(229 aa)、TGB2(107 aa)、TGB3(60 aa)、CP(294 aa)和NABP(119 aa)共6个蛋白。序列一致性分析表明,分离物LVA-Sob与韩国水蜡树分离物LVA-SK的基因组序列一致率高达97.9%,而与我国辽宁省暴马丁香分离物LVA-DX的基因组序列一致率仅为73.6%。在这3个LVA分离物基因组中没有检测到重组事件;基于基因组和cp基因序列的系统发育树显示这3个LVA分离物形成一个分支,并与瑞香S病毒(daphne virus S,DVS)有较近的亲缘关系。  相似文献   

9.
Turnip mosaic virus (TuMV) causes crop losses worldwide. Eight Australian TuMV isolates originally obtained from five different species in two plant families were inoculated to 14 plant species belonging to four families to compare their host reactions. They differed considerably in virulence in Brassicaceae crop species and virus indicator hosts belonging to three other families. The isolates infected most Brassica species inoculated, but not Raphanus sativus, usually causing systemic mosaic symptoms, so they resembled TuMV biological host type [B]. Whole genome sequences of seven of the Australian isolates were obtained and had lengths of 9834 nucleotides (nt). When they were compared with 37 non‐recombinant TuMV genomes from other continents and another whole genome from Australia, six of them formed an Australian group within the overall world‐B phylogenetic grouping, while the remaining new genome sequence and the additional whole genome from Australia were part of the basal‐B grouping. When the seven new Australian genomes and the additional whole genome from Australia were subjected to recombination analysis, six different recombination events were found. Six genomes contained one or two recombination events each, but one was non‐recombinant. The non‐recombinant isolate was in the Australian grouping within the overall world‐B group while the remaining recombinant isolates were in the basal‐B and world‐B phylogenetic groups.  相似文献   

10.
Eight provinces of Iran were surveyed during 2003–2008 to find Brassicaceae reservoir weed hosts of Turnip mosaic virus (TuMV). A total of 532 weed samples were collected from plants with virus-like symptoms. The samples were tested for the presence of TuMV by enzyme-linked immunosorbent assay using specific antibodies. Among those tested, 340 samples (64%) were found to be infected with TuMV. Rapistrum rugosum, Sisymberium loeselii, S. irio and Hirschfeldia incana were identified as the Brassicaceae weed hosts of TuMV, and the former two plant species were found to be the most important weed hosts for the virus in Iran. The full-length sequences of the genomic RNAs of IRN TRa6 and IRN SS5 isolates from R. rugosum and S. loeselii were determined. No evidence of recombination was found in both isolates using different recombination-detecting programmes. Phylogenetic analyses of the weed isolates with representative isolates from the world showed that the IRN TRa6 and IRN SS5 isolates fell into an ancestral basal-Brassica group. This study shows for the first time the wide distribution and phylogenetic relationships of TuMV from weeds in the mid-Eurasia of Iran.  相似文献   

11.
ABSTRACT Tomato chlorotic mottle virus (ToCMoV) is an emerging begomovirus species widely distributed throughout tomato-growing regions of Brazil. ToCMoV appears to have expanded its geographic range recently, invading tomato-growing areas that were free of begomovirus infection before 2004. We have determined the first complete genome sequence of an infectious ToCMoV genome (isolate BA-Se1), which is the first begomovirus species isolated in the northeast of Brazil. When introduced by particle bombardment into tomato, the cloned ToCMoV-[BA-Se1] DNA-A and DNA-B components caused typical chlorotic mottle symptoms. The cloned virus was whitefly-transmissible and, although it was infectious in hosts such as Nicotiana benthamiana, pepper, tobacco, and Nicandra physaloides, it was unable to infect Arabidopsis thaliana, bean, N. glutinosa, and Datura metel. Sequence and biological analyses indicate that ToCMoV-[BA-Se1] is a typical New World begomovirus sp. requiring both DNA-A and DNA-B components to establish systemic infections. Although evidence of multiple recombination events was detected within the ToCMoV-[BA-Se1] DNA-A, they apparently occurred relatively long ago, implying that recombination probably has not contributed to the recent emergence of this species.  相似文献   

12.
Little cherry virus 1 (LChV‐1), a member of the recently proposed genus Velarivirus, is a sweet cherry pathogen that has been recently reported to infect other Prunus species and is associated with various plant disorders. In this work the incidence of the virus on its putative hosts and possible mechanisms driving its evolution were investigated. Due to problems encountered with LChV‐1 detection, a new nested RT‐PCR assay was developed and applied. The virus was found to be prevalent in cherry plantations in Greece and only occasionally detected in other Prunus species. Sequences corresponding to the partial RNA‐dependent RNA polymerase (RdRp), heat‐shock protein homologue (HSP70h) and coat protein (CP) genes were determined from Greek LChV‐1 isolates originating from different hosts; these were analysed, along with published homologous genomic regions from other isolates. Phylogenetic analysis of the three genes revealed the segregation of four evolutionary distinct groups showing no host or geography‐based clustering. Mean genetic distances among the four groups were high with the CP region showing the highest divergence, although intragroup variability levels were low. Nevertheless, estimations of the mean ratio of nonsynonymous substitutions per synonymous site to synonymous substitutions per synonymous site (dN/dS) for the partial RdRp, HSP70h and CP indicated that these genomic regions are under negative selection pressure. Interestingly, a recombination event was identified at the 3′ end of RdRp on a Greek virus isolate, thus highlighting the role of this mechanism in the evolutionary history of LChV‐1.  相似文献   

13.
Little is known about the natural occurrence and genetic variability of nepovirus large satellite RNA (satRNA). This study screened 71 Grapevine fanleaf virus (GFLV) isolates mainly from Slovenia, but also from other countries in Europe and the USA, for the presence of satRNA, using a newly developed RT‐PCR assay. GFLV satRNA (satGFLV) was detected in 72% of naturally GFLV‐infected grapevines analysed, which is the highest frequency of occurrence of satGFLV reported to date. From 39 naturally GFLV‐infected grapevines, 122 satGFLV clones were sequenced and compared to publicly available sequences of satGFLVs and the closely related satRNAs from Arabis mosaic virus (satArMVs). Phylogenetic analyses of these satRNAs revealed that their evolution was driven by substitutions, insertions, deletions, recombinations and reassortments between closely related helper viruses. Phylogenetic relationships of the satGFLVs and satArMVs show their separate and subsequent common evolution. Furthermore, the satGFLVs varied in size and showed higher variability at the amino acid level than at the nucleotide level, just as the 2AHP gene of their helper virus. This study shows that satGFLVs are also similar to their helper virus with respect to their quasispecies nature and their transmission route through anthropogenic exchange of propagation material.  相似文献   

14.
The complete nucleotide sequences of RNAs 1 and 2 of Rice stripe necrosis virus (RSNV) were determined and compared to the corresponding genomes of all sequenced, rod-shaped plant viruses. The genome organisation of RSNV RNA1 and RNA2 is nearly identical to that of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), definitive species of the genus Benyvirus. As demonstrated for BNYVV and BSBMV, the RNA1 of RSNV also encodes a single ORF with putative replicase-associated motifs, which distinguishes benyviruses from all other viruses possessing rod-shaped particles. As described for BNYVV, RNSV RNA-2 also contains six ORFs: the capsid protein gene, the read-through protein gene, a triple gene block gene that codes for three different proteins, and a 17 kDa cysteine-rich protein. RNAs 3 and 4 (or 5 in the case of BNYVV), identified in natural infections of BNYVV and BSBMV, were not detected in any of the 44 RSNV cDNA clones obtained in this investigation. Nevertheless, phylogenetic and amino comparative acid sequence analyses demonstrated that RSNV is more closely related to BNYVV and BSBMV than to any other rod-shaped plant virus characterised to date.  相似文献   

15.
16.
ABSTRACT Previously, we demonstrated that Broad bean mottle virus (BBMV), a member of the genus Bromovirus, could accumulate RNA 2-derived defective interfering (DI) RNAs during infection. In this work, we study how host and environmental factors affect the accumulation of DI RNAs. Serial passages of BBMV through selected plant species reveal that, with low-multiplicity inocula, some systemic hosts (Vicia faba, Nicotiana clevelandii, and N. tabacum cv. Samsum) support DI RNA accumulation after the first passage cycle but other hosts (Phaseolus vulgaris, Pisum sativum, and Glycine max) do not. However, several passages with the high-multiplicity inocula can generate DI RNAs in pea plants. Local lesion hosts (Chenopodium quinoa, C. amaranticolor, and C. murale) remain free of the DI RNA components. The size of the de novo-formed DI RNAs depends on the host and on environmental conditions. For instance, broad bean plants cultivated in a greenhouse or in a growth chamber at 20 degrees C accumulated DI RNAs of 2.4 or 1.9 kb in size, respectively. A reverse trend was observed in pea plants. Lower temperatures greatly facilitated the formation of DI RNAs in broad bean and pea hosts after the first passage. The importance of these findings for the studies on DI RNAs are discussed.  相似文献   

17.
Sequences representing the genomes of two distinct virus isolates infecting wild plants of two members of the genus Drakaea (hammer orchids) in Western Australia are described. The virus isolated from Drakaea livida has a bipartite genome of 4490 nt (RNA1) and 2905 nt (RNA2) that shares closest sequence and structural similarity to members of the genus Pecluvirus, family Virgaviridae, described from legumes in the Indian subcontinent and West Africa. However, it differs from pecluviruses by lacking a P39 protein on RNA2 and having a cysteine‐rich protein gene located 3′ of the triple gene block protein genes. It is the first peclu‐like virus to be described from Australia. The name Drakaea virus A is proposed (DVA; proposed member of the family Virgaviridae, genus unassigned). The second virus isolate was identified from Drakaea elastica, a species classed as endangered under conservation legislation. The genome sequence of this virus shares closest identity with isolates of Donkey orchid symptomless virus (DOSV; proposed member of the order Tymovirales, family and genus unassigned), a species described previously from wild Caladenia and Diuris orchids in the same region. These viruses are the first to be isolated from wild Drakaea populations and are proposed to have an ancient association with their orchid hosts.  相似文献   

18.
In April 2001, stunted barley plants bearing mosaic symptoms were observed in a field in France (Marne Department, 51). Rod-shaped and flexuous particles were visualized by electron microscopy and positive serological reactions were detected by ELISA with Barley yellow mosaic virus (BaYMV) and Soil-borne cereal mosaic virus (SBCMV) polyclonal antisera. The tubular virus which was soil transmissible to barley cv. Esterel was separated from BaYMV by serial mechanical inoculations to barley cv. Esterel. This furo-like virus, in contrast to a French isolate of SBCMV, could be transmitted to Hordeum vulgare, Avena sativa, Beta vulgaris and Datura stramonium. RT-PCR was used to amplify the 3′-terminal 1500 nucleotides of RNA1 and the almost complete sequence of RNA2. Nucleotide and amino acid sequence analyses revealed that the French virus infecting barley is closely related to a Japanese isolate of Soil-borne wheat mosaic virus (SBWMV-JT) which was originally isolated from barley. This French isolate was named SBWMV-Mar. The 3′ UTRs of both RNAs can be folded into tRNA-like structures which are preceded by a predicted upstream pseudoknot domain with seven and four pseudoknots for RNA1 and RNA2, respectively. The four pseudoknots strongly conserved in RNAs 1 and 2 of SBWMV-Mar show strong similarities to those described earlier in SBWMV RNA2 and were also found in the 3′ UTR of Oat golden stripe virus RNAs 1 and 2 and Chinese wheat mosaic virus RNA2. Sequence analyses revealed that the RNAs 2 of SBWMV-Mar and -JT are likely to be the product of a recombination event between the 3′ UTRs of the RNAs 2 of SBWMV and SBCMV. This is the first report of the occurrence of an isolate closely related to SBWMV-JT outside of Japan.  相似文献   

19.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

20.
A novel virus was discovered in a blackcurrant accession (Ribes nigrum L.) at the USDA genebank in Oregon, USA. The genome consists of two positive-sense, single-stranded RNAs with the first encoding a 197 kDa multifunctional protein with methyl transferase, helicase and RNA-dependent RNA polymerase enzymatic motifs. The second molecule encodes two putative proteins; the 39 kDa movement and 30 kDa coat proteins. Both RNAs have conserved sequences and structures at the 5′ and 3′ termini. The genome organization, sequence and phylogenetic analyses indicate that the virus is a putative new member of the genus Idaeovirus, as it consistently groups with privet leaf blotch-associated virus and raspberry bushy dwarf virus. A duplex RT-PCR assay was developed for rapid detection of both genomic RNAs simultaneously. The work presented in this communication will assure the health status of blackcurrant plants in mother blocks, nurseries and production fields alike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号