首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of enrofloxacin and the metabolite ciprofloxacin were studied in horseshoe crabs after a single injection of 5 mg/kg. Twelve Atlantic horseshoe crabs (Limulus polyphemus) of undetermined age were injected with enrofloxacin into the dorsal cardiac sinus. Hemolymph samples were collected by syringe and needle at regular intervals for 120 hr. Samples were analyzed by high‐pressure liquid chromatography and compartmental analysis performed on the results. Following injection, the elimination half‐life (T½), peak concentration, area under the curve (AUC), and volume of distribution (VD) for enrofloxacin were 27.9 (29.13) hr, 8.98 (18.09) μg/ml, 367.38 (35.41) hr μg/ml, and 0.575 (20.48) L/kg, respectively (mean value, CV%). For ciprofloxacin, the elimination T½, peak concentration, and AUC were 61.36 (34.55) hr, 2.34 (24.11) μg/ml, and 304.46 (24.69) μg hr/ml. In these animals, the ciprofloxacin concentrations comprised an average of 45.8% of the total fluoroquinolone concentrations, which is substantial compared to other marine invertebrates. The total AUC produced (sum of enrofloxacin and ciprofloxacin) was 682.69 ± 180.61 μg hr/ml. Concentrations that were achieved after a single dose of 5 mg/kg horseshoe crabs were sufficient to treat bacteria susceptible to enrofloxacin and ciprofloxacin.  相似文献   

2.
Ketorolac is a nonsteroidal anti‐inflammatory drug that possesses potent analgesic activity comparable to morphine. The opioid shortage in the United States has led to an unreliable supply of opioids for use in rehabilitation facilities, thus underscoring the need for research on the safe and effective use of nonopioid alternatives. The goal of this study was to determine the pharmacokinetics of ketorolac after a single 0.25 mg/kg intramuscular injection administered to injured Eastern box turtles (Terrapene carolina carolina). A sparse blood sampling protocol was used to collect samples from 32 wild turtles that presented to the Turtle Rescue Team at North Carolina State University for traumatic injuries. Blood was collected from 0 to 24 hr after injection and analyzed via high‐pressure liquid chromatography (HPLC). A nonlinear mixed‐effects (NLME) model was fitted to the data to obtain typical values for population parameters. Using this approach, we identified a long half‐life (T1/2) of 9.78 hr and a volume of distribution (Vss) of 0.26 L/kg. We have concluded that this long T1/2 for a dose of 0.25 mg/kg ketorolac‐injected IM provides plasma levels above a previously published target level for 24‐hour analgesia to allow for once daily dosing.  相似文献   

3.
Ceftazidime, a third‐generation cephalosporin, is important for treating opportunistic bacterial infections in turtles. Antibacterial dosage regimens are not well established for wild turtles and are often extrapolated from other reptiles or mammals. This investigation used a population pharmacokinetic approach to study ceftazidime in wild turtles presented for rehabilitation. Ceftazidime was administered to 24 wild turtles presented to the Turtle Rescue Team at North Carolina State University. A sparse blood sampling protocol was used to collect samples from 0 to 120 hr with three samples per individual after injection. Plasma samples were analyzed by high‐pressure liquid chromatography (HPLC). A nonlinear mixed‐effects model (NLME) was fitted to the data to determine typical values for population parameters. We identified a long half‐life (T½) of approximately 35 hr and volume of distribution (VSS) of 0.26 L/kg. We concluded that this long T½ will allow for a dose of 20 mg/kg injected IM to maintain concentrations above the MIC of most wild‐type bacteria for 5 days. Because of long intervals between injections, stability of stored formulations was measured and showed that 90% strength was maintained for 120 hr when stored in the refrigerator and for 25 days when stored in the freezer.  相似文献   

4.
5.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

6.
Limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study was conducted to evaluate the pharmacokinetic characteristics of marbofloxacin (MBF) in the green sea turtle, Chelonia mydas, following single intravenous (i.v.) or intramuscular (i.m.) administration at two dosages of 2 and 4 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. MBF in plasma was extracted using liquid–liquid extraction and analyzed by a validated high-performance liquid chromatography (HPLC). MBF was quantifiable from 15 min to 96 hr after i.v. and i.m. administrations at two dose rates. A noncompartmental model was used to fit the plasma concentration of MBF versus time curve for each green sea turtle. The t1/2λz value, similar for both the dosages (22–28 hr), indicated that the overall rate of elimination of MBF in green sea turtles is relatively slow. The average i.m. F% ranged 88%–103%. MBF is a concentration-dependent drug and the AUC/MIC ratio is the best PK/PD predictor for its efficacy. The MBF dosage of 4 mg/kg appeared to produce an appropriate value of the PK-PD surrogate that predicts antibacterial success for disease caused by susceptible bacteria. In contrast, i.m. administration of MBF at a dosage of 2 mg/kg b.w. was not found to produce a suitable PK-PD surrogate index. However, further studies of multiple doses and plasma binding proteins are warranted to confirm an appropriate dosage regimen.  相似文献   

7.
Clinically normal koalas (n = 6) received a single dose of intravenous enrofloxacin (10 mg/kg). Serial plasma samples were collected over 24 h, and enrofloxacin concentrations were determined via high‐performance liquid chromatography. Population pharmacokinetic modeling was performed in S‐ADAPT. The probability of target attainment (PTA) was predicted via Monte Carlo simulations (MCS) using relevant target values (30–300) based on the unbound area under the curve over 24 h divided by the minimum inhibitory concentration (MIC) (fAUC0–24/MIC), and published subcutaneous data were incorporated (Griffith et al., 2010). A two‐compartment disposition model with allometrically scaled clearances (exponent: 0.75) and volumes of distribution (exponent: 1.0) adequately described the disposition of enrofloxacin. For 5.4 kg koalas (average weight), point estimates for total clearance (SE%) were 2.58 L/h (15%), central volume of distribution 0.249 L (14%), and peripheral volume 2.77 L (20%). MCS using a target fAUC0–24/MIC of 40 predicted highest treatable MICs of 0.0625 mg/L for intravenous dosing and 0.0313 mg/L for subcutaneous dosing of 10 mg/kg enrofloxacin every 24 h. Thus, the frequently used dosage of 10 mg/kg enrofloxacin every 24 h subcutaneously may be appropriate against gram‐positive bacteria with MICs ≤ 0.03 mg/L (PTA > 90%), but appears inadequate against gram‐negative bacteria and Chlamydiae in koalas.  相似文献   

8.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

9.
10.
11.
Green sea turtles are widely distributed in tropical and subtropical waters. Adult green sea turtles face many threats, primarily from humans, including injuries from boat propellers, being caught in fishing nets, pollution, poaching, and infectious diseases. To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study aimed to describe the pharmacokinetic characteristics of ceftriaxone (CEF) in green sea turtles, Chelonia mydas, following single intravenous and intramuscular administrations at two dosages of 10 and 25 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 96 hr. The plasma concentrations of CEF were measured by liquid chromatography tandem mass spectrometry. The concentrations of CEF in the plasma were quantified up to 24 and 48 hr after i.v. and i.m. administrations at dosages of 10 and 25 mg/kg b.w., respectively. The Cmax values of CEF were 15.43 ± 3.71 μg/ml and 43.48 ± 4.29 μg/ml at dosages of 10 and 25 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 2.89 ± 0.41 hr and 5.96 ± 0.26 hr at dosages of 10 and 25 mg/kg b.w, respectively. The absolute i.m. bioavailability was 67% and 108%, and the binding percentage of CEF to plasma protein was ranged from 20% to 29% with an average of 24.6%. Based on the pharmacokinetic data, susceptibility break‐point and PK‐PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dosage of 10 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in green sea turtles.  相似文献   

12.
South Africa currently loses over 1000 white rhinoceros (Ceratotherium simum) each year to poaching incidents, and numbers of severely injured victims found alive have increased dramatically. However, little is known about the antimicrobial treatment of wounds in rhinoceros. This study explores the applicability of enrofloxacin for rhinoceros through the use of pharmacokinetic‐pharmacodynamic modelling. The pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were evaluated in five white rhinoceros after intravenous (i.v.) and after successive i.v. and oral administration of 12.5 mg/kg enrofloxacin. After i.v. administration, the half‐life, area under the curve (AUCtot), clearance and the volume of distribution were 12.41 ± 2.62 hr, 64.5 ± 14.44 μg ml?1 hr?1, 0.19 ± 0.04 L h?1 kg?1, and 2.09 ± 0.48 L/kg, respectively. Ciprofloxacin reached 26.42 ± 0.05% of the enrofloxacin plasma concentration. After combined i.v. and oral enrofloxacin administration oral bioavailability was 33.30 ± 38.33%. After i.v. enrofloxacin administration, the efficacy marker AUC24: MIC exceeded the recommended ratio of 125 against bacteria with an MIC of 0.5 μg/mL. Subsequent intravenous and oral enrofloxacin administration resulted in a low Cmax: MIC ratio of 3.1. The results suggest that intravenous administration of injectable enrofloxacin could be a useful drug with bactericidal properties in rhinoceros. However, the maintenance of the drug plasma concentration at a bactericidal level through additional per os administration of 10% oral solution of enrofloxacin indicated for the use in chickens, turkeys and rabbits does not seem feasible.  相似文献   

13.

Objective

Quantify visual acuity of a semi-aquatic turtle species, Terrapene carolina triunguis (three-toed box turtles), utilizing optokinetic response/reflex/nystagmus.

Methods

Ten turtles were placed on a custom platform and an image of white and black gratings of varying sized widths was projected onto a white screen in front of the turtles. Optokinetic response (OKR) was observed through a web camera as well as physically by an observer. The grating sizes were decreased until OKR could not be elicited. The size of grating was recorded and was used to calculate visual acuity.

Results

The average visual acuity was 0.26 cycle per degree (cpd) with the highest recorded value being 0.43 cpd and lowest being 0.15 cpd. Neither sex nor weight were significantly associated with visual acuity (p = .24 and .98, respectively).

Conclusions

Visual acuity of these semi-aquatic turtles was much lower than previously reported visual acuities of aquatic turtles. This could be due to differences in refractive indices between water and air, behavioral adaptations for the different species and/or method of obtaining visual acuity.  相似文献   

14.
The present study aimed to evaluate the pharmacokinetic features of tolfenamic acid (TA) in green sea turtles, Chelonia mydas. Green sea turtles were administered single either intravenous (i.v.) or intramuscular (i.m.) injection of TA, at a dose of 4 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of TA were measured using a validated liquid chromatography tandem mass spectrometry method. Tolfenamic acid plasma concentrations were quantifiable for up to 168 hr after i.v. and i.m. administration. The concentration of TA in the experimental green sea turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 55.01 ± 8.34 µg/ml following i.m. administration. The elimination half-life values were 32.76 ± 4.68 hr and 53.69 ± 3.38 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 72.02 ± 10.23%, and the average binding percentage of TA to plasma protein was 19.43 ± 6.75%. Based on the pharmacokinetic data, the i.m. administration of TA at a dosage of 4 mg/kg b.w. might be sufficient to produce a long-lasting anti-inflammatory effect (7 days) for green sea turtles. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

15.
[Correction added on 23 March 2015, after first online publication: Terminal half‐life values of enrofloxacin is corrected in the fourth sentence of the abstract] Clinically healthy common ringtail possums (= 5) received single doses of 10 mg/kg enrofloxacin orally and then 2 weeks later subcutaneously. Serial plasma samples were collected over 24 h for each treatment phase, and enrofloxacin concentrations were determined using a validated HPLC assay. Pharmacokinetic parameters were determined by noncompartmental analysis. Following oral administration, plasma concentrations were of therapeutic relevance (Cmax median 5.45 μg/mL, range 2.98–6.9 μg/mL), with terminal‐phase half‐life (t½) shorter than in other species (median 3.09 h, range 1.79–5.30 h). In contrast, subcutaneous administration of enrofloxacin did not achieve effective plasma concentrations, with plasma concentrations too erratic to fit the noncompartmental model except in one animal. On the basis of the AUC:MIC, enrofloxacin administered at 10 mg/kg orally, but not subcutaneously, is likely to be effective against a range of bacterial species that have been reported in common ringtail possums.  相似文献   

16.
To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for Hawksbill turtles. Therefore, the present study aimed to assess the pharmacokinetic features of tolfenamic acid (TA) in Hawksbill turtles, Eretmochelys imbricata, after single intravenous (i.v.) and intramuscular (i.m.) administration at dosage 4 mg/kg body weight (b.w.). The study (parallel design) used 10 Hawksbill turtles randomly divided into equal groups. Blood samples were collected at assigned times up to 144 hr. The concentrations of TA in plasma were quantified by a validated liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). The concentration of TA in the experimental turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 89.33 ± 6.99 µg/ml following i.m. administration. The elimination half-life values were 38.92 ± 6.31 hr and 41.09 ± 9.32 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 94.46%, and the average binding percentage of TA to plasma protein was 31.39%. TA demonstrated a long half-life and high bioavailability following i.m. administration. Therefore, the i.m. administration is recommended for use in clinical practice because it is both easier to perform and provides similar plasma concentrations to the i.v. administration. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

17.
Superficial and systemic mycotic infections are common among clinically ill sea turtles, which places growing importance on the establishment of pharmacokinetic-based dosage regimens for antifungal drugs. The pharmacokinetic properties of the antifungal drug fluconazole, after intravenous (i.v.) and subcutaneous (s.c.) injections, were studied in juvenile loggerhead sea turtles (Caretta caretta) housed at 23.0-26.5 degrees C. Fluconazole pharmacokinetic properties were further assessed in a multiple-dose s.c. regimen derived from the pharmacokinetic parameters determined in the single-dose study. Pharmacokinetic parameters were calculated, using a two-compartment model, from plasma concentration-time data obtained after single i.v. and s.c. administrations of fluconazole at a dosage of 2.5 mg/ kg body weight in six juvenile sea turtles. Blood samples were collected at intervals through 120 hr after each dose, and the concentration of fluconazole in plasma was measured by reverse-phase high-performance liquid chromatography. The i.v. and s.c. elimination half-lives were 139.5 +/- 36.0 and 132.6 +/- 48.7 hr (mean +/- SD), respectively. Systemic clearance of fluconazole was 8.2 +/- 4.3 ml/kg x hr, and the apparent volume of distribution at steady state was 1.38 +/- 0.29 L/kg. A multiple-dose regimen was derived, which consisted of a loading dose of 21 mg/kg body weight and subsequent doses of 10 mg/kg administered through s.c. injection every 120 hr (5 days). This regimen was administered to four juvenile sea turtles for 10 days, and blood samples were taken to determine peak and trough plasma concentrations of fluconazole. The mean concentrations for the two peak concentrations were 16.9 +/- 1.1 and 19.1 +/- 2.8 microg/ml 4 hr after dosing, and the mean concentrations for the three trough concentrations were 7.2 +/- 2.2, 10.4 +/- 2.7, and 10.7 +/- 2.9 microg/ml 120 hr after dosing. The terminal half-life after the last dose was calculated at 143 hr. Throughout the multiple dosing, fluconazole concentrations remained above approximately 8 microg/ml, a concentration targeted when treating mycotic infections in humans. The results of this study suggest that fluconazole can be effectively administered to sea turtles at a dosage of 10 mg/kg every 5 days after a loading dose of 21 mg/kg.  相似文献   

18.
To the best of the authors’ knowledge, pharmacokinetic information to establish suitable therapeutic plans for freshwater crocodiles is limited. Therefore, the purpose of this study was to clarify the pharmacokinetic characteristics of enrofloxacin (ENR) in freshwater crocodiles, Crocodylus siamensis, following single intravenous and intramuscular administration at a dosage of 5 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. The plasma concentrations of ENR and its metabolite ciprofloxacin (CIP) were measured by liquid chromatography tandem–mass spectrometry. The concentrations of ENR and CIP in the plasma were quantified up to 144 hr after both the administrations. The half-life was long (43–44 hr) and similar after both administrations. The absolute i.m. bioavailability was 82.65% and the binding percentage of ENR to plasma protein ranged from 9% to 18% with an average of 10.6%. Percentage of CIP (plasma concentrations) was 15.9% and 19.9% after i.v. and i.m. administration, respectively. Based on the pharmacokinetic data, susceptibility break point and PK-PD indexes, i.m. single administration of ENR at a dosage of 5 mg/kg b.w. might be appropriate for treatment of susceptible bacteria (MIC > 1 μg/mL) in freshwater crocodiles, C. siamensis.  相似文献   

19.
Three captive loggerhead sea turtles, Caretta caretta, were used in four trials, one i.v. and three i.m., to determine the pharmacokinetic properties of a single dose of ticarcillin. For the i.v. study, each turtle received a single 50 mg/kg dose and blood samples were collected at 0, 0.5, 1, 2, 4, 6, 8, and 12 hr and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, and 14 days after administration. For the i.m. study, each turtle received one of three dosages (25, 50, or 100 mg/kg) in a randomized complete block design and blood samples were collected at the same time intervals. Each trial was separated by a minimum of 28 days to allow for complete drug clearance. Drug concentration in plasma was determined by a validated liquid chromatography-mass spectrometry assay. For the i.v. study, the elimination half-life was 5.0 hr. The apparent volume of distribution and plasma clearance were 0.17 L/kg and 0.0218 L/hr/kg, respectively. For the i.m. study, mean time to maximum plasma concentrations ranged from 1.7 ( +/- 0.58) hr in the 50 mg/kg group to 3.7 (+/- 2.5) hr in the 100 mg/kg group. Mean bioavailability ranged from 45% ( +/- 15%) in the 50 mg/kg group to 58% (+/- 12%) in the 100 mg/kg group, and the mean residence time ranged from 7.5 ( +/- 2.6) hr in the 25 mg/kg group to 16 (+/- 6.8) hr in the 100 mg/kg group. Two turtles had slight alanine aminotransferase elevations that were not clinically apparent at two different dosages, but otherwise, blood chemistries were unaffected. Possible i.m. dosage regimens for loggerhead sea turtles are 50 mg/kg q24 hr or 100 mg/kg q48 hr. Liver enzymes should be monitored during treatment.  相似文献   

20.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号