首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf spots on the lower leaf surface and sunken spots on the fruit of kiwifruit (Actinidia deliciosa and A. chinensis) were found in Fukuoka Prefecture, Japan. The observed fungus was identified as Pseudocercospora actinidiae Deighton. We propose the name sooty spot of kiwifruit (“susuhan-byo” in Japanese) as a new disease fullfilling Koch’s postulates.  相似文献   

2.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

3.
为明确我国陕西省猕猴桃主产区的徐香、海沃德、华优和秦美4个猕猴桃品种上的猕猴桃褪绿环斑相关病毒(Actinidia chlorotic ringspot-associated virus,AcCRaV)的分布情况,对采集自该省4个地区的493份样品进行AcCRaV检测,基于cp基因序列对获得的AcCRaV分离物进行分子变异分析,并采用高通量测序技术对其中2份样品进行转录组测序。结果显示:AcCRaV在陕西省猕猴桃上分布广泛,且检出率较高,其中周至县秦美猕猴桃上AcCRaV的检出率最高,为45.0%,在杨凌区秦美猕猴桃上AcCRaV的检出率最低,为10.0%。测定的23个AcCRaV分离物cp基因序列全长均为945 nt。系统发育树显示AcCRaV分离物共分成2个组,存在较大的分子变异。AcCRaV的cp基因分子变异与猕猴桃品种有一定关系,而与地理位置相关性不明显。获得了2个AcCRaV分离物ZZ1和ZZ2的基因组序列,RNA1长度分别为7 049 nt和7 274 nt,RNA2长度均为2 266 nt,RNA3长度分别为1 691 nt和1 696 nt,RNA4长度分别为1 736 nt和1 683 nt,RNA5长度分别为1 460 nt和1 497 nt。分离物ZZ1和ZZ2的基因组序列与GenBank中唯一报道的我国湖北省AcCRaV分离物HN-6基因组序列比对中,分离物ZZ2与HN-6的RNA4同源率最高,为96.0%,分离物ZZ2与HN-6的RNA1同源率最低,为87.8%。表明AcCRaV在我国陕西省猕猴桃主产区分布较广泛,且其分子变异与猕猴桃品种有一定关系。  相似文献   

4.
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a disease that is spreading rapidly in several kiwifruit‐producing countries, causing significant economic losses. In 2011, it was detected for the first time in Spain, in the south of Galicia (northwest Spain). Kiwifruit orchards were therefore inspected and sampled in 2011 and 2012 to determine the pathogen distribution, and the isolates obtained were characterized by morphology, fatty acids profile, biochemical tests and molecular techniques. Isolates were obtained from Actinidia deliciosa ‘Hayward’ (from leaves, canes, flower buds, fruits and roots), from A. deliciosa ‘Summer’, from Actinidia chinensis ‘Jin Tao’ (from canes and leaves) and from A. chinensis pollinator ‘Belén’ (from canes). Results of the analysis of the cfl gene (phytotoxin production‐related), the tox–argK gene cluster and phylogenetic analysis of the cts gene demonstrated that all Psa isolates from northwest Spain correspond to the Psa3 population, which includes strains of haplotype 2. This is the first record of Psa3 and haplotype 2 in Spain.  相似文献   

5.
Frost occurs in all major areas of cultivation, presenting a threat for the production of kiwifruit crops worldwide. A series of experiments were performed on 1‐year‐old, potted plants or excised twigs of Actinidia chinensis and A. deliciosa to verify whether strict relationships exist between bacterial canker outbreaks from Pseudomonas syringae pv. actinidiae (Psa) attacks and the occurrence of autumn and winter frost events. The association between the occurrence of autumn frost and the sudden outbreak of bacterial canker in A. chinensis in central Italy has been confirmed. Both autumn and winter frosts promote Psa multiplication in the inoculated twigs of both species. The day after the frost, reddish exudates oozing from the inoculation sites were consistently observed in both species, and Psa was re‐isolated in some cases. During the thawing of both A. deliciosa and A. chinensis twigs, the 2‐cm upward and downward migration of Psa from the inoculation site was observed within 3 min, and the leaves were consistently colonized with the pathogen. A consistent brown discoloration, accompanied with a sour‐sap odour, was observed throughout the length of the excised twigs of both Actinidia species after Psa inoculation and winter frost. Psa inoculation induced a remarkably higher necrosis in excised twigs that were not frozen compared with P. s. pv. syringae inoculation. Antifreeze protection using irrigation sprinklers did not influence the short‐term period of Psa and P. s. pv. syringae multiplication in both A. deliciosa and A. chinensis twigs. Thus, the damage from frost, freeze thawing and the accumulation of Psa in Actinidia twigs promotes the migration of the pathogen within and between the orchards. Taken together, the results obtained in this study confirmed that A. deliciosa is more frost tolerant than A. chinensis, autumn frosts are more dangerous to these crops than winter frosts, and in the absence of Psa, young kiwifruit plants remain sensitive to frost.  相似文献   

6.
Pseudomonas syringae pv. actinidiae (Psa) was identified as the causal agent of severe epidemics of bacterial canker on Actinidia chinensis (yellow kiwifruit) in central Italy occurring during 2008–9. A total of 101 strains were obtained from infected leaves, twigs, branches and trunks of cvs Hort16A, Jin Tao and CK3. Outbreaks were also found on A. deliciosa cv. Hayward. A representative set of 21 strains were compared with other Psa strains isolated from previous outbreaks in Japan and Italy as well as with P. s. pv. syringae strains obtained from A. chinensis and with strains of genomospecies 8. Repetitive‐sequence PCR (rep‐PCR) typing using BOX and ERIC primer sets revealed that all Psa strains obtained during 2008–9 showed the same fingerprinting profile. This profile, however, was different from those of strains previously isolated in Japan and Italy. Multilocus sequence typing (MLST) of gapA, gltA, gyrB and rpoD revealed a higher genetic variability among the strains than rep‐PCR, with some of them showing the same sequence pattern although isolated from different areas, cultivars and years. None of the recently obtained strains possessed genes coding for phaseolotoxin or coronatine, and all had an effector protein, namely hopA1, differentiating them from the strains causing past outbreaks in Japan and Italy. All isolates were inhibited in vitro by copper‐based compounds, antibiotics, geraniol, citronellol and by a chitin‐based organic compound. The recent epidemics found in central Italy on yellow kiwifruit appear to have been caused by a different Psa population than those previously recorded in Japan, South Korea and Italy.  相似文献   

7.
对陕西西安(周至、户县、长安)地区12个村60个猕猴桃园的猕猴桃溃疡病发病特点调查分析,发现品种、树龄与猕猴桃溃疡病的发生直接相关,4个主栽品种(红阳、亚特、秦美和海沃德)中红阳最感病,亚特和海沃德次之,秦美发病最轻;且随着树龄的增大溃疡病危害相应加重(3~13 a生)。地区之间猕猴桃溃疡病严重程度存在着不同程度的差异,除地区间小气候外,管理水平也是影响溃疡病发生的重要因素之一。  相似文献   

8.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

9.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

10.
A virulent strain of Pseudomonas syringae pv. actinidiae biovar 3 (Psa), which causes bacterial canker in kiwifruit, was first recorded in New Zealand in November 2010. This strain has severely affected Actinidia chinensis var. chinensis ‘Hort16A’ kiwifruit productivity but its effect on green Actinidia chinensis var. deliciosa ‘Hayward’ kiwifruit productivity has been variable. An observational study design was used to develop explanatory models to quantify the impacts of Psa infection on productivity (tray equivalents per hectare) of Hayward kiwifruit harvested in 2012, using data captured by industry from 2599 orchards. A total of 934 orchards were Psa positive at the end of the study period. Multivariable linear regression was used to model 2012 productivity in the presence of Psa, while controlling for regional differences, elevation, 2011 productivity, harvest dates and application of agrichemicals. The model showed productivity was initially higher in the presence of Psa, and was not reduced until after 1 year of infection. The relationship between protective spray use and productivity was also quantified. It is likely that improved disease management has offset the impact of the disease and future research should consider a reassessment of the effects of disease after longer term exposure to Psa in New Zealand. The use of an observational cohort study to assess disease impacts using multivariable analysis could have wider application in the field of plant epidemiology.  相似文献   

11.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

12.
Plantain virus X was first recognized by the ICTV as a species in the genus Potexvirus in 1982. However, because no sequence was available for plantain virus X (PlVX), abolishing the species was proposed to the Flexiviridae working group of the ICTV in 2015. This initiated efforts to sequence the original isolates from Plantago lanceolata samples. Here we report the full-genome sequencing of two original isolates of PlVX, which demonstrate that the virus is synonymous to Actinidia virus X, a species previously reported from kiwifruit (Actinidia sp.) and blackcurrant (Ribes nigrum). PlVX was previously noted to be widespread in the UK in P. lanceolata. This report additionally presents novel data on the distribution and diversity of PlVX, collected at the same site as the original UK isolates, and from three independent surveys, two in the Netherlands and one in Belgium. This study also includes two new host records for PlVX, Browallia americana and Capsicum annuum (sweet pepper), indicating the virus is more widespread and infects a broader range of hosts than previously reported. This stresses the importance of surveys of noncultivated species to gain insight into viral distribution and host range. This study also demonstrates the value of generating sequence data for isolates retained in virus collections. Additionally, it demonstrates the potential value in prepublication data sharing for giving context to virus detections such as the four independent studies here which, when combined, give greater clarity to the identity, diversity, distribution, and host range of plantain virus X.  相似文献   

13.
Knowing the population structure of a pathogen is fundamental for developing reliable phytosanitary legislation, detection techniques, and control strategies based on the actual aggressiveness and distribution of the pathogen. Currently, four populations of Pseudomonas syringae pv. actinidiae (Psa) have been described: Psa 1, Psa 2, Psa 3 and Psa 4. However, diagnostic assays specific for Psa populations do not detect Psa 4, the less virulent (LV) strains isolated in New Zealand. Similarly, multilocus sequence typing (MLST) of housekeeping genes, or broad Psa strain genome comparisons, revealed that Psa 4‐LV strains clustered separately from other Psa populations. In order to examine whether the placement of Psa 4 in the pathovar actinidiae was appropriate, various tests were carried out. It was shown that the Psa 4‐LV strains induced leaf and shoot wilting in Prunus cerasus, extensive necrotic lesions in Capsicum annuum fruits, and no significant symptoms in Actinidia deliciosa. Moreover, repetitive‐sequence PCR fingerprinting, type III secretion system effector protein genes detection and colony morphology clearly indicated the distinctiveness of Psa 4‐LV strains from the other three Psa populations. Rep‐PCR molecular typing revealed a high similarity of the Psa 4‐LV strains with members of Pseudomonas avellanae species. The Psa 4‐LV strains, most probably, belong to a new, still unnamed pathovar. It was concluded that the Psa 4‐LV strains isolated in New Zealand do not belong to the pathovar actinidiae, and, consequently, three Psa populations pathogenic to Actinidia spp. should currently include Psa 1, Psa 2 and Psa 3.  相似文献   

14.
Kiwifruit (Actinidia spp.) is native to southern China, but was first cultivated in New Zealand and then spread worldwide. Emerging diseases such as ceratocystis wilt have attracted the attention of kiwifruit growers due to the great losses observed in southern Brazil. Effective control can be achieved by screening for resistance, but the genetic variability of the pathogen must be considered. Thus, this study aimed to assess the genetic diversity and variation in aggressiveness of Ceratocystis isolates from kiwifruit in southern Brazil and then evaluate the resistance of kiwifruit cultivars with the most aggressive isolates. A collection of 46 isolates were obtained from southern Brazil and 14 simple-sequence repeat (SSR) markers was successfully used for genotyping. Out of 14 markers, 13 were polymorphic and identified 26 genotypes. Fourteen distinct genotypes were tested on a susceptible cultivar to select the most aggressive ones. Finally, inoculation with an equal mixture of five of the most aggressive isolates was used to evaluate the resistance of seven kiwifruit cultivars: Red Arguta, Green Arguta, Allison, Chieftain, Hayward, Monty, and Tomury. Cultivars varied in levels of susceptibility, with disease severity ranging from 40% to 100%. Considering the length of stem lesions, Chieftain showed the lowest level of severity at 40%, while no wilt symptoms were observed at 45 days after inoculation. In addition to the seven cultivars, a half-sibling progeny with 618 plants of the rootstock cv. Bruno was also assessed, but only seven individuals were resistant. These seven plants can be cloned and used as resistant rootstocks in commercial orchards.  相似文献   

15.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   

16.
A new strain of Apple stem grooving virus (ASGV) has been identified in Actinidia chinensis imported from China. The leaves of these plants exhibited a variety of symptoms including interveinal mottling, chlorotic mosaics and ringspots. Capillovirus-like particles were observed under the electron microscope, and the virus could be mechanically transmitted to a range of herbaceous indicators. The virus was detected using ELISA with antisera raised against ASGV. Sequencing of the virus revealed that it had more than 95% amino acid identity with ASGV in the putative coat and movement proteins. From the morphological, transmission, serological and molecular evidence, it was concluded that the virus is a strain of ASGV. It is not known how this strain of ASGV is transmitted, other than by grafting, nor is it known what effect the virus has on the growth of infected vines. The Actinidia -infecting strain of ASGV does not occur in New Zealand, and infected plants will not be released from quarantine. The detection methods used during the research will assist quarantine and the safe movement of breeding material.  相似文献   

17.
柑橘叶斑驳病毒(Citrus leaf blotch virus,CLBV)为柑橘病毒属(Citrivirus)代表种。本研究采用RT-PCR技术从我国栽培猕猴桃上首次检测到CLBV,总检出率为13.3%。测定了5个CLBV分离物的外壳蛋白基因(coat protein gene,cp)序列,全长均为1 092核苷酸(nt),分离物间cp基因核苷酸和编码氨基酸序列相似性分别为83.2%~99.7%和91.9%~98.9%,这些分离物与新西兰报道的CLBV猕猴桃分离物M3-A核苷酸序列相似性仅为83%左右,与来源于柑橘及近缘种的CLBV分离物cp基因核苷酸序列相似性为84%~86%。在基于该病毒cp基因核苷酸序列的系统进化树中,本研究所测定的CLBV猕猴桃分离物与新西兰报道的除M3-A外的猕猴桃分离物聚在同一组群。研究结果为进一步明确CLBV在我国猕猴桃上的侵染和危害特点及建立该病毒的分子检测技术提供了重要信息。  相似文献   

18.
 柑橘叶斑驳病毒(Citrus leaf blotch virus, CLBV)在陕西省栽培猕猴桃中发生普遍。为监测CLBV发生情况,本研究建立了CLBV的实时荧光定量PCR(Real-time fluorescent quantitative polymerase chain reaction,RT-qPCR)检测方法。该方法特异性强,可准确检测目的病毒,标准曲线斜率为-3.378,决定系数R2=0.997 9,扩增效率为97.7%,比普通RT-PCR灵敏度高100倍,可用于猕猴桃植株CLBV的批量检测或低丰度病毒样本(如猕猴桃休眠枝条)的检测。为苗木携带CLBV病毒的早期诊断、果园病毒病预测预报和防控奠定了基础。  相似文献   

19.
Since 2012, a new pathogenic syndrome has frequently been observed in many areas of kiwifruit cultivation in Italy. The main symptoms include an initial withering of the leaves followed by a total and sudden collapse of plants, mainly occurring during summer. The withered leaves fall and the main and secondary feeder roots appear rotten, sometimes showing a reddish-brown discoloration. The disease, that affects both the green and yellow-fleshed cultivars, has been called kiwifruit vine decline and is locally known as moria. The syndrome has been found consistently associated with soil waterlogging, which frequently occurs either after the traditional agronomical practice of irrigating orchards through surface irrigation or after very heavy rainfall. So far, the role played by bacteria in this syndrome has not been investigated. In the present study, Clostridium spp. were isolated from both rotten roots and soils obtained from Italian kiwifruit orchards affected by the syndrome, indicating for the first time that anaerobic bacteria are able to cause damage to woody crops. C. bifermentans and C. subterminale incited symptoms in kiwifruit in both in vivo and in vitro pathogenicity tests. Soil waterlogging seems to potentially favour colonization of kiwifruit roots by anaerobic bacteria, probably because saturation of the soil can facilitate proliferation and persistence of these bacteria during long periods of the vegetative growth of the crop. The occurrence of anaerobic bacteria does not exclude the possibility that other microorganisms can play additional/synergic role(s) in causing the kiwifruit vine decline.  相似文献   

20.
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a catastrophic disease that threatens the global kiwifruit industry. As yet, no cure has been developed. Planting resistant cultivars is considered as one of the most effective ways to control Psa. However, most existing cultivars lack Psa-resistance genes. Wild Actinidia resources contain rich genetic diversity and may have powerful disease-resistance genes under long-term natural selection, but lack of knowledge about the resistance to Psa for most Actinidia species results in some excellent wild resistant genotypes being underutilized. In this study, the response to Psa of 104 wild genotypes of 30 Actinidia species (including 37 taxa) was tested with an in vitro bioassay, and a considerable number of individuals from different species with tolerance or high resistance to Psa were identified. The results showed high consistency between years. This is the first large-scale evaluation of diverse Actinidia species with resistance to Psa through an in vitro bioassay. The resistant genotypes of A. chinensis identified could be used in future kiwifruit improvement programmes. The findings should help provide an understanding of the resistance to Psa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号