首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小麦纹枯病品种抗性鉴定技术及抗病资源的筛选与分析   总被引:19,自引:0,他引:19  
分别用玉米粉-砂、麦粒和玉米秸秆作为小麦纹枯菌生长基质,培养获得小麦纹枯病菌接种物。土壤接种诱发试验表明,三种接种物在合适的接种强度下,均能有效诱发泪科纹枯病。据此建立的人工病围2对15份小麦产多年连续鉴定结果表明,病圃具有较稳定的发病率,表现为典型的尖眼点或云纹病斑。对我国主要冬麦区的1300份小麦品种资源、生产品种以及新育成品系进行了病圃鉴定,共筛选出抗纹枯病材料85份,包括菜籽黄、紫秆子、白  相似文献   

2.
为西北农林科技大学小麦新育成品种(系)在黄淮麦区的大面积推广,该研究对83份西农新育成的小麦品种(系)进行苗期抗条锈病和白粉病鉴定,成株期抗条锈病、白粉病、叶锈病和赤霉病鉴定,并在田间自然环境下对其抗性进行鉴定及对相关抗病基因进行分子检测。结果显示,在苗期人工接种鉴定中,有63、29和16份小麦品种(系)分别对条锈菌Puccinia striiformis f.sp.tritici生理小种CYR32、CYR33和CYR34表现出抗性,9份小麦品种(系)对3个条锈菌生理小种均表现出抗性;有10、3和0份小麦品种(系)分别对白粉菌Blumeria graminis f.sp.tritici生理小种E15、E09和A13表现出抗性。在成株期人工接种鉴定中,有23、15、28和62份小麦品种(系)分别对条锈病、白粉病、叶锈病和赤霉病表现出抗性。在83份小麦品种(系)中有6份在苗期和成株期均对小麦条锈病表现出抗性。在田间抗性鉴定中,有57、6、65和40份小麦品种(系)分别对条锈病、白粉病、赤霉病及叶锈病表现出抗性。在83份小麦品种(系)中,3份含有Yr5基因,22份含有Yr9基因,3份含有Yr17基因,2份含有Pm24基因,14份含有Lr1基因,所占比例分别为3.6%、26.5%、3.6%、2.4%和16.8%。  相似文献   

3.
Introduction of alien genes into wheat has been proposed as a strategy to breed cultivars with improved resistance to Fusarium seedling blight (FSB) and Fusarium head blight (FHB). In this study, we co-transformed different anti-fungal peptides (AFPs) into an elite wheat cultivar Yangmai11. We identified the genetically stable transgenic wheat lines carrying single or multiple genes by PCR, qRT-PCR and Southern blot analyses. Transgenic wheat lines 451 and 513 expressing two AFPs displayed a consistent, significantly improved overall resistance to FSB and FHB, whereas only FHB resistance was observed from other lines. Furthermore, crude proteins extracted from the lines 451 and 513 showed a clear inhibitory activity against F. graminearum in vitro. Taken together, it was essential to properly combine and express AFPs in transgenic wheat in order to obtain an improved overall resistance to Fusarium pathogens.  相似文献   

4.
Ma HX  Bai GH  Zhang X  Lu WZ 《Phytopathology》2006,96(5):534-541
ABSTRACT Chinese Spring Sumai 3 chromosome 7A disomic substitution line (CS-SM3-7ADS) is highly resistant to Fusarium head blight (FHB), and an F(7) population of recombinant inbred lines derived from the cross CS-SM3-7ADS x Annong 8455 was evaluated for resistance to FHB to investigate main effects, epistasis, and environmental interactions of quantitative trait loci (QTLs) for FHB resistance. A molecular linkage map consists of 501 simple sequence repeat and amplified fragment length polymorphism markers. A total of 10 QTLs were identified with significant main effects on the FHB resistance using MapQTL and QTLMapper software. Among them, CS-SM3-7ADS carries FHB-resistance alleles at five QTLs on chromosomes 2D, 3B, 4D, and 6A. One QTL on 3BS had the largest effect and explained 30.2% of the phenotypic variance. Susceptible QTLs were detected on chromosomes 1A, 1D, 4A, and 4B. A QTL for enhanced FHB resistance was not detected on chromosome 7A of CS-SM3-7ADS; therefore, the increased FHB resistance in CS-SM3-7ADS was not due to any major FHB-resistance QTL on 7A of Sumai 3, but more likely was due to removal of susceptible alleles of QTLs on 7A of Chinese Spring. QTLMapper detected nine pairs of additive-additive interactions at 17 loci that explained 26% phenotypic variance. QTL-environment interactions explained 49% of phenotypic variation, indicating that the environments significantly affected the expression of the QTLs, especially these epistasis QTLs. Adding FHB-enhancing QTLs or removal of susceptible QTLs both may significantly enhance the degree of wheat resistance to FHB in a wheat cultivar.  相似文献   

5.
田间对比试验结果表明,赤霉病特大流行年不同小麦品种对赤霉病的抗性存在极显著差异,可分为高感、中感和中抗3个类型。因此,生产上应以中抗品种扬麦158作为当家品种,适当示范种植扬麦11、扬麦13等抗病、耐病性较强、产量较高的品种,并加强测报,适时开展药剂防治,综合控制病害的流行为害。  相似文献   

6.
In Europe and North America, deoxynivalenol (DON) is the most prevalent mycotoxin associated with wheat head blight caused by Fusarium graminearum and Fusarium culmorum. Because DON is toxic to plants and enhances the ability of the pathogen to spread within a spike, wheat lines with resistance to DON should be more resistant to head blight. Resistance to DON has been associated with resistance gene Fhb1 that confers resistance to spread within a spike. The objectives of this study were to determine if wheat lines resistant to head blight were also resistant to DON, if genes other than Fhb1 confer resistance to DON, and to identify lines able to fill grain in the presence of DON. Susceptible controls and diverse North American and European winter wheat lines with resistance to head blight were screened for molecular markers linked to known head blight resistance genes, and evaluated in a greenhouse for resistance to DON and relative yield after application of DON to spikes at flowering. Fhb1 appeared to have the unique ability to confer resistance to DON, as measured by the number of DON‐bleached primary florets. However, this resistance did not protect plants from the phytotoxic effects of DON on kernel formation as measured by the relative yield of treated spikes. Furthermore, measuring the relative yield loss following DON application may be useful for identifying lines with tolerance to head blight.  相似文献   

7.
Fusarium head blight (FHB), caused by fungi belonging to the Fusarium genus, is a widespread disease of wheat (Triticum aestivum) and other small-grain cereal crops. The main causal agent of FHB, Fusarium graminearum, produces mycotoxins mainly belonging to type B trichothecenes, such as deoxynivalenol (DON), that can negatively affect humans, animals and plants. DON detoxification, mainly through glucosylation into DON-3-O-glucose, has been correlated with resistance to FHB. A UDP-glucosyltransferase from the model cereal species Brachypodium distachyon has been shown to confer resistance both to initial infection and to spike colonization (type I and type II resistances, respectively). Here, the functional characterization of transgenic wheat lines expressing the Bradi5g03300 UGT gene are described. The results show that, following inoculation with the fungal pathogen, these lines exhibit a high level of type II resistance and a strong reduction of mycotoxin content. In contrast, type I resistance was only weakly observed, although previously seen in B. distachyon, suggesting the involvement of additional host-specific characteristics in type I resistance. This study contributes to the understanding of the functional relationship between DON glucosylation and FHB resistance in wheat.  相似文献   

8.
In this study, the Arabidopsis thaliana NPR1 (non‐expressor of PR genes) gene was integrated into an elite wheat cultivar, and the response of the transgenic wheat expressing NPR1 to inoculation with Fusarium asiaticum was analysed. With seedling inoculation, the transgenic lines showed significantly increased fusarium seedling blight (FSB) susceptibility, whereas floret inoculation resulted in enhanced fusarium head blight (FHB) resistance. Quantitative real‐time PCR revealed that expression of two defence genes, PR3 and PR5, was associated with susceptible reactions to FSB and FHB, whereas the PR1 gene was activated in resistance responses. This inverse modulation by the constitutively expressed NPR1 gene suggests that NPR1 has a bifunctional role in regulating defence responses in plants. Therefore, it is unsuitable for improving overall resistance to FSB and FHB in wheat.  相似文献   

9.
Powdery mildew (Blumeria graminis f. sp. tritici) results in serious economic loss in wheat production. Exploration of plant resistance to wheat powdery mildew over several decades has led to the discovery of a wealth of resistance genes and quantitative trait loci (QTLs). We have provided a comprehensive summary of over 200 powdery mildew genes (permanently and temporarily designated genes) and QTLs reported in common bread wheat. This highlights the diverse and rich resistance sources that exist across all 21 chromosomes. To manage different data for breeders, here we also present a bridged mapping result from previously reported powdery mildew resistance genes and QTLs with the application of a published integrated wheat map. This will provide important insights to empower further breeding of powdery mildew resistant wheat via marker-assisted selection (MAS).  相似文献   

10.
Fusarium head blight (FHB) of wheat heads by Fusarium culmorum causes serious yield losses and compromises the end-use quality by accumulation of mycotoxins and alteration of baking characteristics. The most promising control strategies against the disease combine adequate cropping techniques (i.e. crop rotation avoiding maize as a preceding crop) with the use of resistant varieties. Different types of resistance against this disease have been described such as the resistance to primary infection of the spikelets and the reduction of spread of the infection in other parts of the ear. In recent years, the ability of the kernels to prevent penetration of the fungus and mycotoxin accumulation has received increasing attention. Yet, the detection of kernel resistance for breeding purposes is rather difficult, as the corresponding resistance mechanisms are not fully understood. The aim of the present work is to compare different aspects of kernel resistance in order to define the most significant criteria for breeding purposes. The experimental set up included eight modern Swiss spring wheat varieties grown on small irrigated yield plots (3 × 1.5 m) inoculated at anthesis with a mixture of Fusarium culmorum isolates. Disease ratings from 7 to 28 days post-inoculation were completed with post-harvest analyses for the accumulation of the mycotoxin deoxynivalenol and different baking quality parameters. Results indicate that the accumulation of the mycotoxin deoxynivalenol in the kernels is correlated with visible symptoms on the ear before harvest. In terms of baking quality parameters, water absorption, dough softening and dough resistance are impaired in susceptible varieties after FHB infection, while resistant varieties are not affected. The results obtained here indicate that kernel resistance can be defined by low deoxynivalenol accumulation in the kernels and by stability of several baking quality parameters under conditions of high FHB infection pressure.  相似文献   

11.
Leaf rust caused by Puccina triticina is one of the most destructive fungal diseases of wheat (Triticum aestivum). Adult plant resistance (APR) is an effective strategy to achieve long‐term protection from the disease. In this study, findings are reported from a genome‐wide association study (GWAS) using a panel of 96 wheat cultivars genotyped with 874 Diversity Arrays Technology (DArT) markers and tested for adult leaf rust response in six field trials. A total of 13 quantitative trait loci (QTL) conferring APR to leaf rust were identified on chromosome arms 1BL, 1DS, 2AS, 2BL, 2DS, 3BS, 3BL, 4AL, 6BS (two), 7DS, 5BL/7BS and 6AL/6BS. Of these, seven QTLs mapped close to known resistance genes and QTLs, while the remaining six are novel and can be used as additional sources of resistance. Accessions with a greater number of combined QTLs for APR showed lower levels of disease severity, demonstrating additive and significant pyramiding effects. All QTLs had stable main effects and they did not exhibit a significant interaction with the experiments. These findings could help to achieve adequate levels of durable resistance through marker‐assisted selection and pyramiding resistance QTLs in local germplasm.  相似文献   

12.
Fungicides have not been effective in controlling the wheat blast disease in Brazil. An earlier analysis of 179 isolates of Pyricularia oryzae Triticum lineage (PoTl) sampled from wheat fields across six populations in central-southern Brazil during 2012 discovered a high level of resistance to strobilurin fungicides. Here we analysed azole resistance in the same strains based on EC50 measurements for tebuconazole and epoxiconazole. All six Brazilian populations of PoTl exhibited high resistance to both azoles, with in vitro EC50 values that were at least 35 to 50 times higher than the recommended field doses. We sequenced the CYP51A and CYP51B genes to determine if they were likely to play a role in the observed azole resistance. Although we found five distinct haplotypes in PoTl carrying four nonsynonymous substitutions in CYP51A, none of these substitutions were correlated with elevated EC50. CYP51B was sequenced for nine PoTl isolates, three each representing low, medium, and high tebuconazole EC50. Both PoTl CYP51A and CYP51B could complement yeast CYP51 function. All PoTl CYP51A-expressing yeast transformants were less sensitive to triazoles than the PoTl CYP51B ones. Transformants expressing PoTl CYP51A haplotype H1 carrying the R158K substitution were not more resistant than those expressing PoTl CYP51A haplotype H5, which is synonymous to haplotype H6, found in triazole-sensitive P. oryzae Oryza isolates from rice blast. Therefore, the reduced triazole sensitivity of wheat blast isolates compared to rice blast isolates appears to be associated with a non-target-site related resistance mechanism acquired after higher exposure to triazoles.  相似文献   

13.
The potato cyst nematodes (PCN) Globodera rostochiensis and Globodera pallida are significant pests of potatoes worldwide. The most effective control methods are crop rotation and the deployment of resistant varieties. Complete resistance to G. rostochiensis based on a single resistance gene has successfully been integrated into many varieties. However, resistance to G. pallida has not been as successful to date, with current varieties only exhibiting partial resistance. Combining partially effective quantitative trait loci (QTLs) for resistance can increase the strength and breadth of the resistance. An additive effect on resistance has previously been demonstrated on combining two QTLs from Solanum tuberosum subsp. andigena (GpaIVsadg) and Solanum vernei (Gpa5). However, populations of G. pallida can be quite divergent and it was unclear whether the relative effects of the individual QTLs and the combined additive effect would be consistent across different G. pallida Pa2/3 populations. Using a mapping population segregating for both QTLs, the effect of the QTLs individually and combined was examined on four UK‐derived field populations of G. pallida pathotype Pa2/3, and the relative effects of the individual QTLs and the additive effect of the combination found to be consistent across all populations.  相似文献   

14.
Spot blotch caused by Bipolaris sorokiniana is a serious disease of wheat in warmer and humid regions of the world. Three blighting components, area under disease progress curve (AUDPC), disease severity (DS) and lesion size along with four biochemical and histochemical factors viz., total phenol content (TPC), chlorophyll content (CHC), phenylalanine ammonia-lyase (PAL) activity and lignin deposition were studied in a recombinant inbred lines (RILs) population involving parents “Sonalika” (susceptible) and “Yangmai 6” (resistant). The objective was to identify one or more robust and reliable tools of resistance, physical, biochemical or histochemical, to facilitate selection against spot blotch. The DS, AUDPC and lesion size were higher in the susceptible parent and RILs compared to the resistant. The mean TPC (246 mg Gallic acid g?1 fresh weight) of the most resistant RIL was significantly higher than the most susceptible (181.5 mg Gallic acid g?1 fresh weight) at 48 h after inoculation (hai). The mean SPAD value for CHC varied between 48.8 in the most resistant RILs to 8.8 in the most susceptible, while the mean PAL varied between 928.4 and 96.0 μmoles Cinnamic acid mg-1 fresh weight at 48 hai in resistant and susceptible RILs, respectively. Likewise, lignin deposition was significantly higher in resistant RILs compared to the susceptible. The biochemical and histochemical parameters were significantly correlated with resistance and appeared robust for facilitating screening of breeding material and for increased precision in phenotyping against spot blotch.  相似文献   

15.
Wangshuibai is a Chinese landrace wheat with a high level of resistance to fusarium head blight (FHB) and deoxynivalenol (DON) accumulation. Using an F7 population of recombinant inbred lines (RILs) derived from the cross between Wangshuibai and Annong 8455 for molecular mapping of quantitative trait loci (QTL) for FHB resistance, the proportion of scabbed spikelets (PSS) and DON content were assessed under field conditions. Composite interval mapping revealed that two and three QTL were significantly associated with low PSS and low DON content, respectively, over 2 years. QTL on chromosomes 3B and 2A explained 17 and 11·5%, respectively, of the phenotypic variance for low PSS, whereas QTL on chromosomes 5A, 2A and 3B explained 12·4, 8·5 and 6·2%, respectively, of the phenotypic variance for low DON content. The 3B QTL appeared to be associated mainly with low PSS, and the 5A QTL primarily with low DON content in Wangshuibai. The 2A QTL had minor effects on both low PSS and DON content. Microsatellite and AFLP markers linked to these QTL should be useful for marker-assisted selection of QTL for low PSS and low DNA content from Wangshuibai.  相似文献   

16.
为探讨以病小穗率与病穗率作为抗性评价指标的精确度,利用单花滴注、孢子液喷雾分别结合土表病麦粒接种的方法,评价了2个大麦重组自交系群体131个株系对赤霉病的抗侵染与抗扩展性。单花滴注接种后调查了第7、14和21天的病情性状,接种后第7天所有株系均感病,病小穗率最低的为1.59%,第21天最高病小穗率为58.91%;孢子液喷雾接种后第21天材料全部感病,其中6棱株系的感病程度高于2棱株系。以病小穗率和病穗率划分赤霉病抗性的分布情况,发现病小穗率更能有效区分株系的赤霉病抗性。相关分析显示,病小穗率、病穗率、禾谷镰刀菌烯醇含量与粒色和穗密度呈显著负相关,而与株高、抽穗期无显著相关。  相似文献   

17.
Verticillium albo‐atrum is responsible for considerable yield losses in many economically important crops, among them alfalfa (Medicago sativa). Using Medicago truncatula as a model for studying resistance and susceptibility to V. albo‐atrum, previous work has identified genetic variability and major resistance quantitative trait loci (QTLs) to Verticillium. In order to study the genetic control of resistance to a non‐legume isolate of this pathogen, a population of recombinant inbred lines (RILs) from a cross between resistant line F83005.5 and susceptible line A17 was inoculated with a potato isolate of V. albo‐atrum, LPP0323. High genetic variability and transgressive segregation for resistance to LPP0323 were observed among RILs. Heritabilites were found to be 0·63 for area under the disease progress curve (AUDPC) and 0·93 for maximum symptom score (MSS). A set of four QTLs associated with resistance towards LPP0323 was detected for the parameters MSS and AUDPC. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 4 to 21%. Additive gene effects showed that favourable alleles for resistance all came from the resistant parent. The four QTLs are distinct from those described for an alfalfa V. albo‐atrum isolate, confirming the existence of several resistance mechanisms in this species. None of the QTLs co‐localized with regions involved in resistance against other pathogens in M. truncatula.  相似文献   

18.
Evaluation of oat crown rust resistance is usually based on visual assessment of disease severity or infection types. Visual assessment is subjective, prone to rater bias and requires expert knowledge. PCR-based quantitative assays can overcome challenges associated with visual assessment. New TaqMan primers and probes were designed from Puccinia coronata f. sp. avenae (Pca) sequences. The primer–probe sets were specific to Pca, amplified using as little as 0.5 pg fungal DNA (fDNA) and allowed for scaling to variation in sample total DNA quantity. The quantitative PCR (qPCR) assay was validated using oat recombinant inbred lines (RILs) from the Provena × 94197A1-9-2-2-2-5 cross evaluated under a controlled environment. For comparison with fDNA load, inoculation with the Pca race LCBB provided segregation data on the hypersensitive response, while Pca race LSLG provided data on segregation for reduced pustule number. fDNA content was positively correlated with both pustule number and infection type (IT). Composite interval mapping identified two quantitative trait loci (QTLs) on oat linkage groups Mrg12 and Mrg20 using visual and qPCR assessments (pustule number, IT and fDNA). In this study a qPCR assay method that can be used to assess the relative resistance of oat to crown rust was refined and validated, and single nucleotide polymorphisms (SNPs) closely linked with two QTLs derived from the crown rust resistant line 94197A1-9-2-2-2-5 were identified.  相似文献   

19.
Fusarium head blight (FHB), a devastating disease that affects wheat, is caused by a complex of Fusarium species. The overall impact of Fusarium spp. in wheat production arises through the combination of FHB and mycotoxin infection of the grain harvested from infected wheat spikes. Spike infection occurs during opening of flowers and is favoured by high humidity or wet weather accompanied with warm temperatures. Available possibilities for controlling FHB include the use of cultural practices, fungicides and biological approaches. Three cultural practices are expected to be of prime importance in controlling FHB and the production of mycotoxins: soil preparation method (deep tillage), the choice of the preceding crop in the rotation and the selection of appropriate cultivar.  相似文献   

20.
兼抗麦长管蚜和大麦黄矮病毒的小麦种质田间鉴定筛选   总被引:1,自引:1,他引:0  
为鉴定筛选兼抗麦长管蚜和大麦黄矮病毒(Barley yellow dwarf virus, BYDV)的小麦种质,采用自然感蚜/感病系数法,对36个外引和远缘杂交选育的小麦种质材料进行了2年的田间鉴定,并分析了感虫性与感病性的相关关系。结果表明,2年中均兼抗麦长管蚜和BYDV的种质仅有KOKIPPCAS、KOK、Amigo-3和PI137739共4个材料,占总鉴定材料的11.11%;对二者均敏感的有98-10-35q-9、186Tm39、Tam200e12-14a、Tam200(27)7、小偃22、西农1376和小偃6号共7个材料,占19.44%。其它材料仅抗虫或仅抗病,或仅在一年中表现抗病或抗虫,如材料98-10-30和98-10-35a8抗麦长管蚜,但对BYDV敏感;材料Tam200(13)G和PIG23(2)C感蚜,但对BYDV有抑制作用。BYDV发生普遍率(发病株率)和严重度(病情指数)与有蚜株率显著相关,严重度还与感蚜指数显著相关,但感病植株的病级均值与有蚜株率无显著相关性。表明自然界长期的进化和选择使许多抗病虫基因得以保存下来,但较多抗性基因只在抗病或抗虫的某一方面表现有效,需给予更多关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号