首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The variation of the vernalization (VRN‐1) and photoperiod (PPD‐1) genes offers opportunities to adjust heading time and to maximize yield in crop species. The effect of these genes on heading time was studied based on a set of 245 predominantly spring cultivars of bread wheat from the main eco‐geographical regions of Europe. The genotypes were screened using previously published diagnostic molecular markers for detecting the dominant or recessive alleles of the major VRN‐1 loci such as: VRN‐A1, VRN‐B1, VRN‐D1 as well as PPD‐D1. We found that 91% of spring wheat cultivars contain the photoperiod sensitive PPD‐D1b allele. Photoperiod insensitive PPD‐D1a allele has been found mainly in southern region of Europe. For this region the monogenic control of vernalization by VRN‐B1 or VRN‐D1 dominant alleles is common, whereas in the remaining part of Europe, the combination of photoperiod sensitive PPD‐D1b allele with dominant VRN‐A1, VRN‐B1 and recessive vrn‐D1 alleles represents the most frequent genotype. Also, we revealed a significantly later (5–8 days) heading of the monogenically dominant genotypes at VRN‐B1 as compared to the digenic VRN‐A1 VRN‐B1 genotypes.  相似文献   

2.
中国黄淮海地区小麦品种抗寒性及其与VRN1基因型的关系   总被引:1,自引:0,他引:1  
冬季冻害是当前小麦生产面临的主要自然灾害之一。以我国黄淮海地区近年主栽的71个小麦品种为材料,通过对其抗寒性调查和VRN-A1、VRN-B1、VRN-D1位点基因型的分子标记鉴定,研究小麦抗寒性的生物学基础,探讨VRN1基因在小麦抗寒性中的作用。结果表明,小麦的抗寒性与其他抗逆性状相关联,生产和国家区域试验证实具有较好抗旱节水、耐盐碱等抗逆特性的品种多具有较强抗寒性。VRN1是小麦抗寒性的关键性遗传调控位点之一,显性基因VRN1的存在会显著降低品种的抗寒性,具有2个或3个VRN1基因的品种一般抗寒性都很弱,而3个位点均为隐性基因是品种具有强抗寒性的必备条件。因此,建议我国黄淮海北部地区应加强选育、推广基因型为vrn-A1vrnB1vrn-D1的品种,以保证小麦安全生产。  相似文献   

3.
Among the wheatgrasses that are possible sources of genetic resistance for wheat to barley yellow-dwarf-virus disease (BYD) are those that have been commonly subsumed under the name Agropyron elongatum (Host) P. Beauv. Two of these wheatgrass species are the diploid Lophopymm elongatum (Host) Á. Löve (2n = 2x = 14) and the decaploid L. ponticum (Podp.) Á. Löve (2n = 10x = 70). These two species, the addition and substitution lines of L. elongatum chromosomes in hexaploid wheat (Triticum aestivum L.), and derivatives of hybrids between hexaploid wheat and L. ponticum, were screened for resistance to BYD, as defined by visual symptoms in field-grown plants. The two species, an amphiploid derived from L. elongatumבChinese Spring’ wheat, and the derivatives involving L. ponticum chromosomes were all highly resistant. The substitution and addition lines of L. elongatum chromosomes in ‘Chinese Spring’ revealed that the genetic control of resistance in L. elongatum must be complex, with more than one critical locus involved. Chromosomes 2E and 5E are involved and there are lesser contributions to resistance from the remaining wheatgrass chromosomes. One highly resistant derivative was determined to have only three pairs of L. ponticum chromosomes. It has a wheat-like morphology and shows promise for further characterization.  相似文献   

4.
Previous studies in several Triticeae species have suggested that salt tolerance is a polygenic trait, but that genes on some chromosomes confer better tolerance to salt stress than others. This suggests an intriguing possibility that there may be a similar basis for salt tolerance in the species of the tribe Triticeae. In this study, chromosomal control of the tolerance to sudden salt stress, measured as the mean rate of leaf elongation in solution cultures with a single increment of 200 mM NaCl, was investigated in the genomes of cultivated barley (Hordeum vulgare L.), rye (Secale cereale L.), and Dasypyrum villosum (L.) Can-dargy by using disomic addition lines of individual pairs of chromosomes or chromosome arms of each of the three species in the ‘Chinese Spring’ wheat genetic background. It was observed that the chromosomes of homoeologous groups 3, 4, and 5 in barley, 5 and 7 in rye, and 4 and 6 in D. villosum carry loci with significant positive effects on salt tolerance. Increased doses of chromosomes of group 2, however, reduce or do not increase the tolerance to salt stress. These results are in agreement with a previous study of the tolerance of this salt stress regime in wheat and wheatgrass Lophopyrum elongatum. A ranking analysis of the chromosomal effects within each genome of the five Triticeae species investigated in this and previous studies revealed that the chromosomes of homoeologous groups 3 and 5 consistently confer large positive effects on the tolerance of sudden salt stress, while the chromosomes of homoeologous group 2 in increased dose have no or negative effects on the tolerance. This strongly suggests that species of the tribe Triticeae share some common genetic mechanisms of tolerance of sudden salt stress. The findings in this study give credence to the proposal that wild relatives can be exploited in the development of wheat cultivars with greater tolerance to salt stress.  相似文献   

5.
Summary The advent of molecular marker systems has made it possible to develop comparative genetic maps of the genomes of related species in the Triticeae. These maps are being applied to locate and evaluate allelic and homoeoallelic variation for major genes and quantitative trait loci within wheat, and to establish the pleiotropic effects of genes. Additionally, the known locations of genes in related species can direct searches for homoeologous variation in wheat and thus facilitate the identification of new genes. Examples of such analyses include the validation of the effects of Vrn1 on chromosome 5A on flowering time in different crosses within wheat; the indication of pleiotropic effects for stress responses by the Fr1 locus on chromosome 5A; the detection of homoeologous variation for protein content on the homoeologous Group 5 chromosomes; and the detection of a new photoperiod response gene Ppd-H1 in barley from homoeology with Ppd2 of wheat.  相似文献   

6.
B. Keller  N. Stein  C. Feuillet 《Euphytica》2001,119(1-2):131-133
The hexaploid wheat genome is too complex for direct map-basedcloning and model genomes have to be used to isolate genes from wheat.Comparative genomic analysis at the genetic map level has shown extensiveconservation of the gene order between the different grass genomes inmany chromosomal regions. However, little is known about the geneorganization in grass genomes at the microlevel. We have investigated themicrocollinearity at Lrk gene loci in the genomes of four grass species:wheat, barley, maize and rice. The Lrk genes, which encodereceptor-like kinases, were found to be consistently associated with anothertype of receptor-like kinase (Tak) on chromosome groups 1 and 3 inTriticeae and on chromosomes homoeologous to Triticeae group 3 in theother grass genomes. On Triticeae chromosome group 1, Tak and Lrk together with genes putatively encoding NBS/LRR proteins form acluster of genes. Comparison of the gene composition at orthologous Lrk loci in wheat, barley and rice revealed a maximal gene density of onegene per 5 kb. We conclude that small and large grass genomes containregions which are highly enriched in genes. Microrearrangements betweendifferent grass genomes have been found and therefore, the choice of agood model genome is critical. We have recently started to work on theT. monococcum model genome and confirmed its usefulness foranalysis of the Lr10 leaf rust disease resistance locus in wheat.  相似文献   

7.
Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred to wheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring × Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the substitution lines were susceptible to Mayetiola destructor and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs.  相似文献   

8.
9.
Genetic polymorphism within and between three species of forage grasses, perennial ryegrass (Lolium perenne L), meadow fescue (Festuca pratensis Huds.) and tall fescue (Festuca arundinacea Schreb.), was analyzed using restriction fragment length polymorphism (RFLP) markers detected by rice cDNA probes developed at the Rice Genome Research Programme of Japan (RGP). One hundred and ninety‐seven rice cDNA clones were used for hybridization to genomic DNA of forage grasses. Many of the rice cDNA clones produced no visible band or only a smear with no discrete bands. Twenty‐three clones showed high efficiency cross‐hybridization to the genomic DNA of forage grasses. Genetic variation was evaluated for five varieties and one population of forage grasses using 12 polymorphic rice cDNA RFLP probes. Genetic variability within varieties as measured by Rogers’ genetic distance was considerably lower for the F. pratensis variety ‘Tomosakae’ than for the L. perenne and F. arundinacea varieties. To determine the genetic diversity between varieties of different species, cluster analysis was performed using data from the 12 RFLP probes. The two accessions of Lolium perenne were clustered more closely together than the three varieties of F. arundinacea. Two Japanese varieties of F. arundinacea were grouped in the same cluster. The variety‐specific RFLP markers were seen among six accessions of L. perenne, F. pratensis and F. arundinacea. Such variety‐specific RFLP markers would provide very useful tools for breeding programmes such as the intergeneric hybridization of Lolium and Festuca genera.  相似文献   

10.
P. K. Gupta  B. R. Baum 《Euphytica》1989,41(3):191-197
Summary The two causes of destabilization of names in the tribe Triticeae are discussed in detail. These include changes in names due to changing classifications and changes in names due to application of nomenclatural rules. We favour the opinion that a classification should be based on maximum information and not on one single character like the genome as suggested in a recent classification of Dewey and that of Löve. The problem of changes in names is discussed using two examples-Triticum-Aegilops group and Agropyron-Elytrigia-Leymus group. The users of Triticeae grasses, should always authenticate the material they are using and specify the scheme or reference of classification they follow in naming their material, even though one would have the freedom to use a particular classification and thus the names given in this classification.The problem of instability in the names of Triticeae grasses due to nomenclatural rules are discussed using the examples of bread wheat (T. aestivum) and of Haynaldia villosa. A list of recommended names of World's flora for preservation as suggested by Brummitt recently has also been examined.  相似文献   

11.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

12.
Dwarf mutants are valuable and crucial resources for genetic research and crop breeding programme in rice. In this study, we identified a dwarf mutant derive from tissue culture, which exhibited a delayed heading date and dwarfism under long‐day growth conditions, suggesting the heading date of dwarf mutant was sensitive to day length. Based on 2000 F2 mutant‐like individuals from the cross of the mutant and a Japonica var. ‘IRAT129’, the dwarf gene was finally narrowed into a 512‐kb region near the centromere on chromosome 9. According to the sequence analysis of a delimited region, 21 genes had base alternations either in promoters (15 SNPs) or in coding regions (6 InDels) among 73 annotated genes, and five genes were confirmed sequence alternations resulting from their expression mainly in the vegetative organs. Given to the RNAi plants of the five genes incapable to mimic dwarf and late heading date phenotype, the candidate gene remains to be identified by other genetic or molecular methods. Therefore, all these results give us informative foundation for the day‐length‐sensitive dwarf gene isolation.  相似文献   

13.
Development of effective molecular markers linked to Pm21 deriving from Haynaldia villosa is critical for wheat breeding of powdery mildew resistance. In this study, we designed 12 pairs of conserved‐intron scanning primers (CISPs), using intron‐containing conserved genes located on the short arm of Brachypodium distachyon chromosome 3 (3BdS) aligned with cDNA or expressed sequence tags (ESTs) of Triticeae crops. Of 12 CISP primer pairs, 11 amplified DNA both in H. villosa and in wheat, and four displayed H. villosa chromosome 6VS‐specific polymorphisms. Six non‐polymorphic DNAs were further sequenced for designing internal primers, and five additional 6VS‐specific markers were obtained. Of the total nine 6VS‐specific co‐dominant markers, six could effectively trace Pm21 in F2 population derived from the hybrid between the T6AL.6VS line and ‘Yangmai 158’. This study demonstrated that Brachypodium genomic information could be powerfully utilized to develop molecular markers in H. villosa or other Triticeae species.  相似文献   

14.
Thickspike wheatgrass (Elymus lanceolatus [Scribn. & J.G. Sm.] Gould) is an important native perennial grass species used for rangeland revegetation in North America. Plant breeding efforts relying on space‐plant evaluations have resulted in limited improvement in this species. The purpose of this study was to characterize the performance of thickspike wheatgrass half‐sib families under space‐plant and sward plot evaluations, estimate the correlation between measured traits in both evaluation settings, and determine the validity of selecting thickspike wheatgrass for rangeland revegetation in the nontarget environment space‐plant plots. The study included 50 thickspike wheatgrass half‐sib families and five commercial cultivars and experimental populations which were evaluated over 3 years in space‐plant and sward plot evaluations at a field site in Box Elder County, Utah, USA. Collected data included stand percentage, flag leaf height, and herbage dry mass. Narrow‐sense heritability estimates were low to moderate (h< 0.60) and Spearman and genetic correlation estimates among traits were also generally low to moderate. Overall, there was little evidence to suggest the use space‐plant evaluations in thickspike wheatgrass improvement programmes.  相似文献   

15.
为进一步探究春化基因VRN1在小麦发育进程中的功能,利用荧光定量PCR分析了VRN1基因在不同发育特性小麦品种新春2号、京841中的表达情况。结果表明,随着生育进程的推进,VRN1基因在新春2号叶片和茎尖中表达量均呈上升趋势,VRN1基因在京841叶片中呈波动上升趋势,在茎尖中表达量趋于0;以p FGC5941载体为基础构建含有VRN1反向重复序列的RNA干扰载体,利用农杆菌介导的茎尖转化法转化新春2号获得了再生植株,并通过PCR法检测获得了转基因阳性植株,为从分子水平上实现小麦发育特性遗传改良和创育小麦新种质奠定了基础。  相似文献   

16.
For reproductive success, flowering time must synchronize with favourable environmental conditions. Vernalization genes play a major role in accelerating or delaying the time to flowering. We studied how different vernalization (VRN1) gene combinations alter days to flowering and maturity and consequently the effect on grain yield and other agronomic traits. The study focussed on the effect of the VRN1 gene series (Vrn‐A1, Vrn‐B1 and Vrn‐D1) and their combinations. The Vrn gene group Vrn‐A1a, Vrn‐B1, vrn‐D1 was the earliest to flower and mature, while Vrn‐A1b, Vrn‐B1, vrn‐D1 was the latest to flower. Spring wheat lines with vrn‐A1, Vrn‐B1, Vrn‐D1 were the highest yielding and matured at a similar time as those having vernalization genes Vrn‐A1a, Vrn‐B1 and Vrn‐D1. The findings of this study suggest that the presence of Vrn‐D1 has a direct or indirect role in producing higher grain yield. We therefore suggest the introduction of Vrn‐D1 allele into higher‐yielding classes within Canadian spring wheat germplasm.  相似文献   

17.
Perennial ryegrass (Lolium perenne L.) is the most important temperate forage grass species. Unfortunately, the nutritional value of perennial ryegrass declines as maturity progresses, mainly because of a high concentration of poorly digestible compounds in inflorescences. Therefore, the development of forage‐type ryegrass varieties with extended vegetative growth is of interest for agriculture. To delay floral transition in perennial ryegrass the Arabidopsis ATH1 gene driven by the maize ubiquitin promoter, the rice actin promoter or the rice OSH1 promoter, respectively was introduced. In ATH1‐expressing plants heading was delayed, and in a number of cases the plants never flowered at all. Such non‐ or late‐heading was accompanied by the outgrowth of normally quiescent lateral meristems into extra leaves, resulting in a leafy growth habit. When eventually heading, these plants generally produced a reduced number of inflorescences. These observations suggest that ATH1‐mediated delay of heading may be useful to improve fodder quality of perennial ryegrass.  相似文献   

18.
Development and application of functional markers in maize   总被引:8,自引:0,他引:8  
Summary Functional markers (FMs) are derived from polymorphic sites within genes causally involved in phenotypic trait variation (Andersen, J.R. & T. Lübberstedt, 2003. Trends Plant Sci 8: 554–560). FM development requires allele sequences of functionally characterized genes from which polymorphic, functional motifs affecting plant phenotype can be identified. In maize and other species with low levels of linkage disequilibrium, association studies have the potential to identify sequence motifs, such as a few nucleotides or insertions/deletions, affecting trait expression. In one of the pioneering studies, nine sequence motifs in the dwarf8 gene of maize were shown to be associated with variation for flowering time (Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Nat Genet 28: 286–289). Proof of sequence motif function can be obtained by comparing isogenic genotypes differing in single sequence motifs. At current, the most appropriate approach for this purpose in crops is targeting induced local lesions in genomes (TILLING) (McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Nat Biotechnol 18: 455–457). In central Europe, maize is mainly grown as forage crop, with forage quality as major trait, which can be determined as proportion of digestible neutral detergent fiber (DNDF). Brown midrib gene knock out mutations have been shown to be beneficial for forage quality but disadvantageous for overall agronomic performance. Two brown midrib genes (bm1 and bm3) have been shown to be involved in monolignol biosynthesis. These two and additional lignin biosynthesis genes have been isolated based on sequence homology. Additional candidate genes putatively affecting forage quality have been identified by expression profiling using, e.g., isogenic bm lines. Furthermore, we identified an association between a polymorphism at the COMT locus and DNDF in a collection of European elite inbred lines.  相似文献   

19.
We tested three different consensus chloroplast simple sequence repeat (ccSSR) primers to identify amplified polymorphic products in Hordeum chilense, Hordeum vulgare and other Triticeae species with a double aim. First, to use chloroplast‐specific primers as an indirect method for the assessment of wheat cytoplasmic male sterile purity in seedlings during multiplication and in the development of alloplasmic lines. Second, to analyse cytoplasmic relationships among H. chilense accessions and between H. chilense and other members of the Triticeae tribe. The products from primer ccSSR‐4 were easily discriminated using agarose gel electrophoresis. Based on the lengths of amplification products, three groups were identified: the first included almost exclusively H. chilense accessions, the second contained H. vulgare accessions and the third comprised the wheat and the rest of the analysed accessions. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the expansion/contraction of the microsatellite repeat length. Data analyses of sequenced fragments revealed six groups of accessions among the material studied. No significant differences were found among H. chilense accessions.  相似文献   

20.
A. Chandra    K. K. Tiwari 《Plant Breeding》2010,129(1):120-124
Guineagrass ( Panicum maximum Jacq.) is one of the major forage grasses in tropical and semitropical regions, largely apomictic and predominantly exist as tetraploid. Non-availability of polymorphic molecular markers has been a major limitation in its characterization and improvement. We report isolation and characterization of microsatellites in P. maximum and cross-species results with other five Panicum species. Based on microsatellite-motifs, 15 functional and polymorphic simple sequence repeat (SSR) primer-pairs were designed, validated and employed in estimating genetic relationship among 34 guineagrass accessions. Thirteen primer-pairs amplified single locus and remaining two generated more than two loci with an average of 3.57 bands per locus amounts to 63 bands with 34 guineagrass accessions. Average expected heterozygosity ( H E) of 0.35 (maximum 0.97) and observed heterozygosity ( H O) of 0.37 (maximum 0.91) established the efficiency of developed markers for discriminating guineagrass accessions. Dice's similarity coefficients-based unweighted pair group with arithmetic average method-clustering supported with high bootstrap values (≥40) indicated its significance and distinguished all accessions except IG97-93 and IG97-6. Utility of these new SSR loci in genetic diversity study of P. maximum and other cross–amplified species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号