首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pharmacokinetic properties of amoxicillin (AMX) and clavulanic acid (CLV) were studied in healthy cats following single intravenous and oral dosage of 10 mg/kg of AMX and 2.5 mg/kg of CLV. The drug concentrations in plasma were determined by a high‐performance liquid chromatographic – tandem mass spectrometry (LC‐MS‐MS) method validated for canine plasma and further subjected to noncompartmental analysis. After intravenous injection, no significant difference (p > 0.05) was found in the volume of distribution of these two compounds. In addition, AMX and CLV were both rapidly eliminated from plasma with a clearance of 0.453 and 0.921 L hr?1 kg?1, respectively; however, a quicker elimination was observed for CLV (p < 0.01). After oral administration, both drugs were characterized by rapid absorption with an absorption half‐life of 1.10 and 0.70 hr for AMX and CLV, respectively. Significant differences were observed between their absorption rates (p < 0.05). However, the oral bioavailabilities of AMX and CLV (75.57% and 98.15%, respectively) were not statistically different (p > 0.05). A total intravenous or oral dose at 12.5 mg/kg of AMX and CLV (4:1) is predicted to be effective for treating those bacterial species isolated from cats with a minimum inhibitory concentration (MIC) of ≤0.25 μg/ml for 12 hr, based on a time above the MIC (T > MIC) of 40%.  相似文献   

2.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

3.
OBJECTIVES: The aim of this work was to examine the pharmacokinetics of diclofenac (DCLF) in sheep after intravenous (IV) and intramuscular (IM) dosing. ANIMALS: Healthy male Najdi sheep. MATERIALS AND METHODS: Diclofenac (1 mg kg(-1)) was administered to ten clinically healthy-male Najdi sheep IV or IM (n = 5 each). Blood samples (5 mL) were collected and serum was separated for drug analysis by high-performance liquid chromatography with UV detection. Diclofenac pharmacokinetic parameters were determined by noncompartmental analysis. RESULTS: Diclofenac is quickly eliminated from sheep with a terminal T(1/2lambda) of 2-3 hours for both routes of administration. Total DCLF clearance after IV and IM administration was 87.86 +/- 24.10 and 85.69 +/- 40.76 mL kg(-1) hour(-1) respectively. The absolute bioavailability of IM DCLF appears to be approximately 100%. CONCLUSIONS AND CLINICAL RELEVANCE: The drug should be administered two to three times daily in sheep by IM or IV injection to maintain therapeutic concentrations. Additional studies are needed to evaluate the route of elimination of DCLF in sheep including metabolites formation and the significance of enterohepatic circulation.  相似文献   

4.
The aim of this study was to evaluate the disposition of cyclosporine after intravenous (i.v.) and oral administration and to evaluate single sampling times for therapeutic monitoring of cyclosporine drug concentrations in cats. Six adult male cats (clinically intact) were used. Two treatments consisting of a single i.v. cyclosporine (1 mg/kg) and multiple oral cyclosporine (3 mg/kg b.i.d p.o. for 2 weeks) doses. Whole blood cyclosporine concentrations were measured at fixed times by high performance liquid chromatography and pharmacokinetic values were calculated. Mean values for the i.v. data included AUC (7413 ng/mL.h), t1/2 distribution and elimination (0.705 and 9.7 h, respectively), Cmax (1513 ng/mL), and Vd(ss) (1.71 L/kg). Mean values for the oral data included AUC (6243 ng/mL.h), t1/2 of absorption and elimination (0.227 and 8.19 h, respectively), and Cmax (480.0 ng/mL). Bioavailability of orally administered cyclosporine was 29 and 25% on days 7 and 14 respectively. Whole blood comment cyclosporine concentration 2 h after administration (C2) better correlated with AUC on days 7 and 14 than trough plasma concentration (C12). The rate of oral cyclosporine absorption was less than expected and there was substantial individual variation. Therapeutic drug monitoring strategies for cyclosporine in cats should be re-evaluated.  相似文献   

5.
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.  相似文献   

6.
Ceftiofur, a third‐generation cephalosporin antibiotic, is being extensively used by pet doctors in China. In the current study, the detection method was developed for ceftiofur and its metabolites, desfuroylceftiofur (DCE) and desfuroylceftiofur conjugates (DCEC), in feline plasma. Then, the pharmacokinetics studies were performed following one single intravenous and subcutaneous injection of ceftiofur sodium in cats both at 5 mg/kg body weight (BW) (calculated as pure ceftiofur). Ceftiofur, DCE, and DCEC were extracted from plasma samples, then derivatized and further quantified by high‐performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetics parameters. The terminal half‐life (t1/2λz) was calculated as 11.29 ± 1.09 and 10.69 ± 1.31 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady‐state (VSS) were determined as 14.14 ± 1.09 ml hr‐1 kg‐1 and 241.71 ± 22.40 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 14.99 ± 2.29 μg/ml) was observed at 4.17 ± 0.41 hr, and the absorption half‐life (t1/2ka) and absolute bioavailability (F) were calculated as 2.83 ± 0.46 hr and 82.95%±9.59%, respectively. The pharmacokinetic profiles of ceftiofur sodium and its related metabolites demonstrated their relatively slow, however, good absorption after subcutaneous administration, poor distribution, and slow elimination in cats. Based on the time of drug concentration above the minimum inhibitory concentration (MIC) (T>MIC) calculated in the current study, an intravenous or subcutaneous dose at 5 mg/kg BW of ceftiofur sodium once daily is predicted to be effective for treating feline bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

7.
The purpose of this study was to determine the pharmacokinetics of baicalin after intravenous and intramuscular administration of sodium baicalin at 50 mg/kg to piglets. Plasma baicalin levels were determined by high‐performance liquid chromatography. The plasma concentration–time data of baicalin for both administration routes were best described by two‐compartmental open model. The area under the plasma concentration–time curve and the elimination half‐lives were 77.47 ± 6.14 µg/ml × h and 1.73 ± 0.16 hr for intravenous and 64.85 ± 5.67 µg/ml × h and 2.42 ± 0.15 hr for intramuscular administration, respectively. The apparent volume of distribution and body clearance were 1.63 ± 0.23 L/kg and 2.74 ± 0.30 L h?1 kg?1 for intravenous and 0.51 ± 0.10 L/kg and 0.78 ± 0.08 L h?1 kg?1 for intramuscular routes, respectively. An intramuscular injection of sodium baicalin in piglets resulted in rapid and complete absorption, with a mean maximal plasma concentration of 77.28 ± 7.40 µg/ml at 0.17 hr and a high absolute bioavailability of 83.73 ± 5.53%.  相似文献   

8.
Five lactating cows were given benzydamine hydrochloride by rapid intravenous (0.45 mg/kg) and by intramuscular (0.45 and 1.2 mg/kg) injection in a crossover design. The bioavailability, pharmacokinetic parameters and excretion in milk of benzydamine were evaluated. After intravenous administration, the disposition kinetics of benzydamine was best described using a two-compartment open model. Drug disposition and elimination were fast (t 1/2: 11.13±3.76 min;t 1/2: 71.98±24.75 min; MRT 70.69±11.97 min). Benzydamine was widely distributed in the body fluids and tissues (V d(area): 3.549±1.301 L/kg) and characterized by a high value for body clearance (33.00±5.54 ml/kg per min). After intramuscular administration the serum concentration-time curves fitted a one-compartment open model. Following a dose of 0.45 mg/kg, theC max value was 38.13±4.2 ng/ml at at max of 67.13±4.00 min; MAT and MRT were 207.33±22.64 min and 278.01±12.22 min, respectively. Benzydamine bioavailability was very high (92.07%±7.08%). An increased intramuscular dose (1.2 mg/kg) resulted in longer serum persistence (MRT 420.34±86.39 min) of the drug, which was also detectable in milk samples collected from both the first and second milking after treatment.Abbreviations HPLC high-pressure liquid chromatography - IC50 concentration to inhibit the activity of an organism by 50% - IM intramuscular(ly) - IV intravenous(ly) - NSAID non-steroidal antiinflammatory drugs - pK a negative logarithm of the ionization constant (K a) of a drug; other abbreviations are listed in footnotes to tables  相似文献   

9.
10.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

11.
12.
Reasons for performing study: Detomidine is commonly used i.v. for sedation and analgesia in horses, but the pharmacokinetics and metabolism of this drug have not been well described. Objectives: To describe the pharmacokinetics of detomidine and its metabolites, 3‐hydroxy‐detomidine (OH‐detomidine) and detomidine 3‐carboxylic acid (COOH‐detomidine), after i.v. and i.m. administration of a single dose to horses. Methods: Eight horses were used in a balanced crossover design study. In Phase 1, 4 horses received a single dose of i.v. detomidine, administered 30 μg/kg bwt and 4 a single dose i.m. 30 üg/kg bwt. In Phase 2, treatments were reversed. Plasma detomidine, OH‐detomidine and COOH‐detomidine were measured at predetermined time points using liquid chromatography‐mass spectrometry. Results: Following i.v. administration, detomidine was distributed rapidly and eliminated with a half‐life (t1/2(el)) of approximately 30 min. Following i.m. administration, detomidine was distributed and eliminated with t1/2(el) of approximately one hour. Following, i.v. administration, detomidine clearance had a mean, median and range of 12.41, 11.66 and 10.10–18.37 ml/min/kg bwt, respectively. Detomidine had a volume of distribution with the mean, median and range for i.v. administration of 470, 478 and 215–687 ml/kg bwt, respectively. OH‐detomidine was detected sooner than COOH‐detomidine; however, COOH‐detomidine had a much greater area under the curve. Conclusions and potential relevance: These pharmacokinetic parameters provide information necessary for determination of peak plasma concentrations and clearance of detomidine in mature horses. The results suggest that, when a longer duration of plasma concentration is warranted, the i.m. route should be considered.  相似文献   

13.
The onset of action and behavioural effects following intravenous (i.v.) and intramuscular (i.m.) administration of 0.05, 0.5, 1.0, 2.0 and 5.0 mg/kg of midazolam were studied for 2 h in 20 awake, healthy cats. All cats, except one that received 0.05 mg/kg i.m., showed effects of the drug, whereas no effects were observed in cats administered only the vehicle in which midazolam was dissolved. The onset of action was rapid following both i.v. and i.m. administration, some cats became ataxic, while others assumed positions of sternal or lateral recumbency. Even after administration of the highest dose (5.0 mg/kg), anaesthesia was not induced, with swallowing reflexes and conscious perception of a clamp placed on the tail still present in all cats. An abnormal arousal state was observed in many cats after administration of midazolam. During the first hour, restlessness was more commonly observed, while from 1 to 2 h, sedation was more prominent in cats that received the highest dose. Ataxia occurred in all but one cat, was short-lived in cats that received the lower doses, but still present at 2 h in all cats that received 2.0 and 5.0 mg/kg. Midazolam caused some of the cats to behave differently when approached and restrained compared with behavioural patterns identified prior to administration of the drug. The cats were more likely to behave abnormally following i.v. administration rather than i.m. administration and, for the most part, abnormal behaviour was equally distributed between the two extremes; cats being easier to approach and restrain and cats being more difficult to approach and restrain. Food consumption increased significantly, during the 2 h period, following all i.m. doses and all but the highest (5.0 mg/kg) i.v. dose, with most of the food being consumed in the first hour after administration.  相似文献   

14.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

15.
1. The pharmacokinetics and bioavailability of levofloxacin in turkeys were investigated after a single intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight.

2. The concentrations of levofloxacin in plasma samples were assayed using a microbiological assay method and pharmacokinetic parameters were calculated by non-compartmental analysis.

3. Following IV administration, the elimination half-life (t0.5(β)), volume of distribution at steady state (Vdss) and total body clearance (Cl) were 4.49 h, 1.31 l/kg and 0.23 l/h/kg, respectively.

4. After single IM and PO administrations at the same dose, levofloxacin was rapidly absorbed as indicated by an absorption half-life (t0.5ab) of 1.02 and 0.76 h, respectively; maximum plasma concentrations (Cmax) of 5.59 and 5.15 μg/ml were obtained at a maximum time (Tmax) of 2 h for both routes and levofloxacin bioavailability (F) was 96.5 h and 79.9% respectively after IM and PO administration. In vitro plasma protein binding of levofloxacin was 24.3%.

5. Based on these pharmacokinetic parameters, a dose of 10 mg/kg body weight given intramuscularly or orally every 24 h in turkeys can maintain effective plasma concentrations with bacterial infections with (minimum inhibitory concentration) MIC90 > 0.1 μg/ml.  相似文献   


16.
The absorption, metabolism and urinary excretion of phenylbutazone were investigated in six adult cattle in a cross-over study involving administration intravenously, intramuscularly and orally at a dose rate of 4.4 mg kg-1. Following intravenous injection plasma disposition was described by a three compartment open model with mean elimination half-life (t1/2 beta) and clearance (ClB) values of 35.9 hours and 2.77 ml kg-1 h-1, respectively. Somewhat longer t1/2 beta values were obtained after oral and intramuscular dosing and these may have resulted from sequestration within and slow absorption from the gastrointestinal tract and continual uptake from intramuscular sites following precipitation as a depot. Absorption was more complete after intramuscular than after oral dosing; area under curve values were almost twice as high for the intramuscular route. Double peaks in the plasma concentration time curves after oral dosing were recorded in some cows. These may have resulted from drug adsorption on to and subsequent desorption from hay or as a consequence of enterohepatic shunting. There was no evidence for opening of the oesophageal groove and direct passage of the drug into the abomasum. Two hydroxylated metabolites of phenylbutazone, oxyphenbutazone and gamma-hydroxyphenylbutazone were detected in trace amounts in plasma for 72 hours and in much higher concentrations in urine for 168 hours. Approximate urine:plasma (U/P) concentration ratios for the metabolites approached and occasionally exceeded the U/P ratio for endogenous creatinine, indicating poor reabsorption and, possibly, tubular secretion. Cumulative urinary excretion data indicated that the hydroxylated derivatives of phenylbutazone are probably formed more slowly in cattle than in horses.  相似文献   

17.
Thymoquinone (TQ) is the major constituent of Nigella sativa and known to possess a variety of pharmacological effects. This study was designed to evaluate the pharmacokinetic profile of TQ following oral (PO) and intravenous (IV) administration in layer chickens. The layer chickens were equally divided into two groups (six chickens in each group, total 12 chickens), and TQ was administered via PO and IV routes. For PO route, the dose was 20 mg/kg b.w. and for IV route, 5 mg/kg b.w. was administered, respectively. A sensitive and accurate High‐Performance Liquid Chromatography (HPLC) technique was validated for the quantification of TQ from plasma. The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 µg/ml and 0.05 µg/ml, respectively with >80% recovery. Maximum plasma concentration (Cmax) following PO and IV administration was 8.805 and 4.497 µg/ml, respectively, while time to reach at maximum concentration (Tmax) was 1 and 0.1 hr, respectively. The elimination half‐lives were recorded as 1.02 and 0.978 hr, whereas the mean residence times were 1.79 and 1.036 hr following both PO and IV administration, respectively. The 85% PO bioavailability was indicative that TQ could be used for various therapeutic purposes in layer chickens.  相似文献   

18.
The pharmacokinetics of deracoxib in seven healthy cats were determined following a single oral (1 mg/kg) dose. Minimal variability among cats was found for all estimated pharmacokinetic variables. Terminal half-life (t(1/2)) was 7.9 hours. The mean maximum concentration (C(max)) was 0.28 microg/mL and was measured 3.64 hours after drug administration. Deracoxib was not detectable in the plasma after 60 hours. The compounded liquid formula was accepted readily, and no adverse effects were observed. Further studies are needed to determine the efficacy and safety of deracoxib after acute and chronic use in the cat.  相似文献   

19.
20.
The aim of this study was to investigate the pharmacokinetic properties of mosapride after intravenous and oral administration to beagle dogs. To obtain the advanced pharmacokinetic parameters of mosapride, both noncompartmental analysis and pharmacokinetic modeling were performed. Twenty beagle dogs were randomly sorted into intravenous (1 mg single administration of mosapride) and oral (5 mg once a day administration of mosapride) groups. Blood samples were collected according to the reported schedule for pharmacokinetics. The plasma concentration of mosapride was analyzed using liquid chromatography–tandem mass spectrometry. According to the pharmacokinetic analysis, the absorption rate of mosapride was 3.14 ± 1.14 hr−1 and oral bioavailability of mosapride was approximately 1%. The one-compartment model well described the pharmacokinetics of mosapride after both intravenous and oral administration to dogs. These findings will help facilitate the determination of the optimal dose regimen of mosapride for dogs with gastrointestinal disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号