首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymoquinone (TQ) is the major constituent of Nigella sativa and known to possess a variety of pharmacological effects. This study was designed to evaluate the pharmacokinetic profile of TQ following oral (PO) and intravenous (IV) administration in layer chickens. The layer chickens were equally divided into two groups (six chickens in each group, total 12 chickens), and TQ was administered via PO and IV routes. For PO route, the dose was 20 mg/kg b.w. and for IV route, 5 mg/kg b.w. was administered, respectively. A sensitive and accurate High‐Performance Liquid Chromatography (HPLC) technique was validated for the quantification of TQ from plasma. The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 µg/ml and 0.05 µg/ml, respectively with >80% recovery. Maximum plasma concentration (Cmax) following PO and IV administration was 8.805 and 4.497 µg/ml, respectively, while time to reach at maximum concentration (Tmax) was 1 and 0.1 hr, respectively. The elimination half‐lives were recorded as 1.02 and 0.978 hr, whereas the mean residence times were 1.79 and 1.036 hr following both PO and IV administration, respectively. The 85% PO bioavailability was indicative that TQ could be used for various therapeutic purposes in layer chickens.  相似文献   

2.
The objective of this study was to determine the pharmacokinetics of intravenous and oral firocoxib in 10 healthy preweaned calves. Firocoxib (0.5 mg/kg) was initially administered i.v. to calves, and following a 14‐day washout period, animals received firocoxib orally prior to cautery dehorning. Firocoxib concentrations were determined by liquid chromatography–tandem mass spectrometry. Changes in hematology and plasma chemistry were determined using automated methods. Computer software was used to estimate pharmacokinetic parameters best described with a two‐compartment model for i.v. administration and a one‐compartment model for p.o. administration. Following i.v. dosing, the geometric mean (range) T1/2K10 and T1/2β were 6.7 (4.6–9.7) and 37.2 (23.5–160.4) h, respectively, Vss was 3.10 (2.10–7.22) L/kg, and CL was 121.7 (100.1–156.7) mL/h/kg. Following oral administration, geometric mean (range) Cmax was 127.9 (102.5–151.3) ng/mL, Tmax was 4.0 (2.6–5.6) h, and T1/2K10 was 18.8 (14.2–25.5) h. Bioavailability of oral firocoxib was calculated using the AUC derived from both study populations to be 98.4% (83.1–117.6%). No adverse clinical effects were evident following firocoxib administration. Pharmacokinetic analysis of i.v. and p.o. firocoxib indicates high bioavailability and a prolonged terminal half‐life in preweaned calves.  相似文献   

3.
The purpose of this study was to determine the pharmacokinetics and safety profile of firocoxib in neonatal foals. Seven healthy foals were administered 0.1 mg/kg firocoxib orally q24 h for nine consecutive days, commencing at 36 h of age. Blood was collected for firocoxib analysis using high‐pressure liquid chromatography with fluorescence detection at 0 (dose #1 only), 0.25, 0.5, 1, 2, 4, 8, 16, and 24 h after doses 1, 5, and 9. For all other doses (2, 3, 4, 6, 7, and 8), blood was collected immediately prior to the next dose (24 h trough). Elimination samples (36, 48, 72, 96, 120, and 144 h) were collected after dose 9. Safety was assessed via physical examinations, body weight measurements, gastroscopy, complete blood count, plasma biochemistry and urinalysis. Firocoxib was rapidly absorbed following oral administration with minimal accumulation after repeat dosing. After the final dose, the terminal half‐life was approximately 11 h. Firocoxib was below the limit of detection (<2.5 ng/mL) in plasma 72 h after the final dose. No significant abnormalities were found on blood analyses, urinalysis, or gastroscopy. This study demonstrated that firocoxib is absorbed in neonatal foals with no demonstrable adverse effects after repeated doses of 0.1 mg/kg.  相似文献   

4.
The purpose of this study was two-fold: I) to determine the pharmacokinetic profile of meloxicam (MLX) in geese after intravenous (IV) and oral (PO) administration and II) to assess tissue residues in muscle, heart, liver, lung, and kidney. Ten clinically normal female Bilgorajska geese were divided into two groups (treated, n = 8; control, n = 2). Group 1 underwent a 3-phase parallel study with a 1-week washout period. In phase I, animals received MLX (0.5 mg/kg) by IV administration; the blood was collected up to 48 hr. In phases II and III geese were treated orally at the same dosage for the collection of blood and tissue samples, respectively. Group 2 served as control. After the extraction procedure, a validated HPLC method with UV detection was used for plasma and organ analysis. The plasma concentrations were quantifiable up to 24 hr after both the administrations. The elimination phase of MLX from plasma was similar in both the administration groups. The clearance was slow (0.00975 L/hr*Kg), the volume of distribution small (0.0487 L/kg), and the IV half-life was 5.06 ± 2.32 hr. The average absolute PO bioavailability was 64.2 ± 24.0%. Residues of MLX were lower than the LOQ (0.1 µg/kg) in any tested tissue and at any collection time. The dosage used in this study achieved the plasma concentration, which provides analgesia in Hispaniolan Amazon parrots for 5 out of 24 hr after PO administration. MLX tissue concentrations were below the LOD of the assay in tissue (0.03 µg/ml). A more sensitive technique might be necessary to determine likely residue concentrations in tissue.  相似文献   

5.
Thiamphenicol (TP) pharmacokinetics were studied in Japanese quails (Coturnix japonica) following a single intravenous (IV) and oral (PO) administration at 30 mg/kg BW. Concentrations of TP were determined with HPLC and were analyzed by a noncompartmental method. After IV injection, elimination half-life (t1/2λz), total body clearance (Cltot) volume of distribution at steady state (Vdss), and mean residence time (MRT) of TP were 3.83 hr, 0.19 L/hr/kg, 0.84 L/kg, and 4.37 hr, respectively. After oral administration of TP, the peak plasma concentration (Cmax) was 19.81 μg/ml and was obtained at 2.00 hr (tmax) postadministration. Elimination half-life (t1/2λz) and mean absorption time (MAT) were 4.01 hr and 1.56 hr, respectively. The systemic bioavailability following oral administration of TP was 78.10%. TP therapy with an oral dosage of 30 mg/kg BW is suggested for a beneficial clinical effect in quails.  相似文献   

6.
The objective of this study was to establish a single-dose pharmacokinetic profile for orally administered itraconazole in California sea lions (Zalophus californianus). Twenty healthy rehabilitated juvenile California sea lions were included in this study. Itraconazole capsules were administered orally with food at a target dose of 5–10 mg/kg. Blood samples were collected from each animal at 0 hr and at two of the following timepoints: 0.5, 1, 2, 4, 6, 8, 12, 24, 48, and 72 hr. Quantitative analysis of itraconazole in plasma samples was performed by high-performance liquid chromatography. An average maximum concentration of 0.22 µg/ml ± 0.11 was detected 4 hr after administration. The average concentration fell to 0.12 µg/ml ± 0.11 by 6 hr and 0.02 µg/ml ± 0.02 at 12 hr. At no point did concentrations reach 0.5 µg/ml, the concentration commonly accepted for therapeutic efficacy. While this formulation was well tolerated by the sea lions, oral absorption was poor and highly variable among individuals. These data indicate that a single oral dose of itraconazole given as a capsule at 5–10 mg/kg, under the conditions used in this study, does not achieve therapeutic plasma concentrations in California sea lions.  相似文献   

7.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   

8.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

9.
Pharmacokinetic (PK) studies of oral firocoxib in large animal species have been limited to horses, preruminating calves, and adult camels. The aim of this study was to describe pharmacokinetics and bioavailability of firocoxib in adult goats. Ten healthy adult goats were administered 0.5 mg/kg firocoxib intravenously (i.v.) and per os (p.o.) in a randomized, crossover study. Plasma firocoxib concentrations were measured over a 96‐hr period for each treatment using HPLC and mass spectrometry, and PK analysis was performed. The p.o. formulation reached mean peak plasma concentration of 139 ng/ml (range: 87–196 ng/ml) in 0.77 hr (0.25–2.00 hr), and half‐life was 21.51 hr (10.21–48.32 hr). Mean bioavailability was 71% (51%–82%), indicative of adequate gastrointestinal absorption of firocoxib. There were no negative effects observed in any animal, and all blood work values remained within or very near reference range at the study's conclusion. Results indicate that oral firocoxib is well‐absorbed and rapidly reaches peak plasma concentrations, although the concentration also decreased quickly prior to the terminal phase. The prolonged half‐life may suggest tissue accumulation and higher plasma concentrations over time, depending on dosing schedule. Further studies to determine tissue residue depletion, pharmacodynamics, and therapeutic concentrations of firocoxib in goats are necessary.  相似文献   

10.
Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are commonly used systemically for the treatment of inflammatory ocular disease in horses. However, little information exists regarding the ocular penetration of this class of drugs in the horse. Objective: To determine the distribution of orally administered flunixin meglumine and firocoxib into the aqueous humor of horses. Animals: Fifteen healthy adult horses with no evidence of ophthalmic disease. Methods: Horses were randomly assigned to a control group and 2 treatment groups of equal sizes (n = 5). Horses assigned to the treatment groups received an NSAID (flunixin meglumine, 1.1 mg/kg PO q24h or firocoxib, 0.1 mg/kg PO q24h for 7 days). Horses in the control group received no medications. Concentrations of flunixin meglumine and firocoxib in serum and aqueous humor and prostaglandin (PG) E2 in aqueous humor were determined on days 1, 3, and 5 and aqueous : serum ratios were calculated. Results: Firocoxib penetrated the aqueous humor to a significantly greater extent than did flunixin meglumine at days 3 and 5. Aqueous : serum ratios were 3.59 ± 3.32 and 11.99 ± 4.62% for flunixin meglumine and firocoxib, respectively. Ocular PGE2 concentrations showed no differences at any time point among study groups. Conclusions and Clinical Importance: Both flunixin meglumine and firocoxib penetrated into the aqueous humor of horses. This study suggests that orally administered firocoxib penetrates the aqueous humor better than orally administered flunixin meglumine at label dosages in the absence of ocular inflammation. Firocoxib should be considered for the treatment of inflammatory ophthalmic lesions in horses at risk for the development of adverse effects associated with nonselective NSAID administration.  相似文献   

11.
Pregnancy induces several physiologic changes that might impact the bioavailability, distribution, metabolism, and excretion of drugs. The objective of this study was to determine the effects of pregnancy on the disposition of oral firocoxib in mares. Seven pony mares received oral firocoxib paste at a dose of 0.1 mg/kg during late pregnancy and again 12 to 33 days postpartum. Firocoxib concentrations were measured in plasma by HPLC with ultraviolet detection. Maximum plasma concentrations were significantly lower in pregnant (50.0 ± 21.8 ng/mL) than in postpartum (73.7 ± 25.6 ng/mL) mares. Plasma concentrations 24 h after administration, time to maximum plasma concentrations, and area under the plasma concentration versus time curve were not significantly different between late pregnancy and the postpartum period in mares.  相似文献   

12.
The aim of the present study was to determine the pharmacokinetics (PKs) and bioavailability of danofloxacin in chukar partridge (Alectoris chukar) following intravenous (IV), intramuscular (IM), subcutaneous (SC), and oral (PO) administrations at a dose of 10 mg/kg. A total of eight clinically healthy chukar partridges weighing 480 ± 45 g were used for the investigation. The study was performed in a crossover design (2 × 2 × 2 × 2) with a 15‐day washout period between two administrations in four periods. The plasma concentrations of danofloxacin were determined using reversed‐phase high‐performance liquid chromatography. Noncompartmental PK parameters were also estimated. No local or systemic adverse drug effects were observed in any of the chukar partridges. The mean elimination half‐life ranged between 8.18 and 12.08 hr and differed statistically among administration routes. The mean peak plasma concentrations of danofloxacin following IM, SC, and PO administrations were 8.05, 9.58, and 3.39 μg/ml at 0.5, 1, and 4 hr, respectively. Following IM, SC, and PO administrations, the mean bioavailability was 86.33%, 134.40%, and 47.62%, respectively. The mean total clearance and volume of distribution at steady‐state following IV administration were 0.13 L hr?1 kg?1 and 0.96 L/kg, respectively. These data, including favorable PKs and the absence of adverse drug effects, suggest that danofloxacin is a useful antibiotic in chukar partridges.  相似文献   

13.
The pharmacokinetics of florfenicol (FF) and thiamphenicol (TP) after single intravenous (IV) and oral (PO) administration was investigated in Mulard ducks. Both antibiotics were administered at a dose of 30 mg/kg body weight, and their concentrations in plasma samples were assayed using high‐performance liquid chromatography with ultraviolet detection. Pharmacokinetic parameters were calculated using a noncompartmental method. After IV administration, significant differences were found for the mean residence time (2.25 ± 0.21 hr vs. 2.83 ± 0.50 hr for FF and TP, respectively) and the general half‐life (1.56 ± 0.15 hr vs. 1.96 ± 0.35 hr for FF and TP, respectively) indicating slightly slower elimination of TP as compared to FF. The clearance, however, was comparable (0.30 ± 0.07 L/hr/kg for FF and 0.26 ± 0.04 L/hr/kg for TP). The mean volume of distribution was below 0.7 L/kg for both drugs. Pharmacokinetics after PO administration was very similar for FF and TP suggesting minor clinical importance of the differences found in the IV study. Both antimicrobials showed rapid absorption and bioavailability of more than 70% indicating that PO route should be an efficient method of FF and TP administration to ducks under field conditions.  相似文献   

14.
Equine metabolic syndrome (EMS) is prevalent in the equine population, and somatostatin analogs might be useful for diagnosis and/or treatment of EMS in horses. The purpose of this study was to evaluate the glucose and insulin responses to subcutaneous and intravenous administration of somatostatin. Six healthy research horses were included in this prospective study. An initial pilot study was performed to assess several different doses (10–22 µg/kg [4.5–10 µg/lb]) in two horses, then a final dosage of 22 µg/kg (10 µg/lb) was administered to six horses IV and SQ in a two‐period randomized cross‐over study performed over a 3‐month study period. Blood samples were collected for measurement of plasma insulin and glucose concentrations during a 24‐hr study period. Both IV and SQ somatostatin resulted in decreased insulin and increased glucose concentrations. SQ somatostatin resulted in a longer clinical effect, with return to baseline insulin occurring at 1.5 hr postadministration, versus 45 min for IV. Both IV and SQ administration of somatostatin to normal horses resulted in decreased insulin and increased glucose concentrations, likely due to suppression of insulin secretion by somatostatin. A more prolonged effect was seen following SQ administration as compared to IV administration, and no adverse effects were noted at varying doses. This study provides additional information regarding the effect of somatostatin administration on insulin and glucose concentrations in clinically healthy horses.  相似文献   

15.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

16.
The pharmacokinetics of tylosin were investigated in 3 groups of ducks (n = 6). They received a single dose of tylosin (50 mg/kg) by intravenous (IV), intramuscular (IM), and oral administrations, respectively. Plasma samples were collected at various time points to 24 hr post-administration to evaluate tylosin concentration over time. Additionally, tylosin residues in tissues and its withdrawal time were assessed using 30 ducks which received tylosin orally (50 mg/kg) once daily for 5 consecutive days. After IV administration, the volume of distribution, elimination half-life, area under the plasma concentration–time curve, and the total body clearance were 7.07 ± 1.98 L/kg, 2.04 hr, 19.47 µg hr/ml, and 2.82 L hr−1 kg−1, respectively. After IM and oral administrations, the maximum plasma concentrations were 3.70 and 2.75 µg/ml achieved at 1 and 2 hr, and the bioavailability was 93.95% and 75.77%, respectively. The calculated withdrawal periods of tylosin were 13, 8, and 5 days for kidney, liver, and muscle, respectively. For the pharmacodynamic profile, the minimum inhibitory concentration for tylosin against M. anatis strain 1,340 was 1 µg/ml. The calculated optimal oral dose of tylosin against M. anatis in ducks based on the ex vivo pharmacokinetic/pharmacodynamic modeling was 61 mg kg−1 day−1.  相似文献   

17.
OBJECTIVE: To determine cyclooxygenase (COX)-2 selectivity, pharmacokinetic properties, and in vivo efficacy of firocoxib (ML-1,785,713) in cats. ANIMALS: 5 healthy male and 14 healthy female domestic shorthair cats. PROCEDURE: Selectivity of firocoxib for inhibiting COX-2 was determined by comparing the potency for inhibiting COX-1 with that of COX-2 in feline blood. Pharmacokinetic properties were determined after i.v. (2 mg/kg) and oral (3 mg/kg) administration in male cats. In vivo efficacy was evaluated in female cats with lipopolysaccharide (LPS)-induced pyrexia with administration of firocoxib 1 or 14 hours before LPS challenge. RESULTS: Blood concentrations resulting in 50% inhibition of COX-1 and COX-2 activity in vitro were 75 +/- 2 microM and 0.13 +/- 0.03 microM, respectively, and selectivity for inhibiting COX-2 relative to COX-1 was 58. Firocoxib had moderate to high oral bioavailability (54% to 70%), low plasma clearance (4.7 to 5.8 mL/min/kg), and an elimination half-life of 8.7 to 12.2 hours. Firocoxib at doses from 0.75 to 3 mg/kg was efficacious in attenuating fever when administered to cats 1 or 14 hours before LPS challenge. CONCLUSIONS AND CLINICAL RELEVANCE: Firocoxib is a potent COX-2 inhibitor and is the only selective COX-2 inhibitor described for use in cats to date. It is effective in attenuating febrile responses in cats when administered 14 hours before LPS challenge, suggesting it would be suitable for once-a-day dosing. Because selective COX-2 inhibitors have an improved therapeutic index relative to nonselective nonsteroidal anti-inflammatory drugs in humans, firocoxib has the potential to be a safe, effective anti-inflammatory agent for cats.  相似文献   

18.
Cefuroxime axetil pharmacokinetic profile was investigated in 12 Beagle dogs after single intravenous and oral administration of tablets or suspension at a dose of 20 mg/kg, under both fasting and fed conditions. A three-period, three-treatment crossover study (IV, PO under fasting and fed condition) was applied. Blood samples were withdrawn at predetermined times over a 12-hr period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. No statistically significant differences were observed between formulations and feeding conditions on PK parameters. Independently of the feeding condition, absorption of cefuroxime axetil after tablet administration was low and erratic. The drug has been quantified in plasma in 3 out of 6 and 5 out of 6 dogs in the fasted and fed groups. For this formulation, the bioavailability (F), peak plasma concentration (Cmax), and area under the concentration–time curve (AUC) of cefuroxime axetil were significantly enhanced (p < .05) by the concomitant ingestion of food (32.97 ± 13.47–14.08 ± 7.79%, 6.30 ± 2.62–2.74 ± 0.66 µg/ml, and 15.75 ± 3.98–7.82 ± 2.76 µg.hr/ml for F, Cmax, and AUC in fed and fasted dogs, respectively), while for cefuroxime axetil suspension, feeding conditions affected only the rate of absorption, as reflected by the significantly shorter absorption half-life (T½(a)) and time to peak concentration (Tmax) (0.55 ± 0.27–1.15 ± 0.19 hr and 1.21 ± 0.22–1.70 ± 0.30 for T½(a) and Tmax in fed and fasted dogs, respectively). For cefuroxime axetil tablets, T > MIC (≤1 µg/ml) was <2 hr in fasted and ≈4 hr in fed animals, and for cefuroxime axetil suspension, T > MIC (≤1 µg/ml) was ≈5 hr and for T >MIC (≤4 µg/ml) was ≈2.5 hr for fasted and fed dogs, respectively. Cefuroxime axetil as a suspension formulation seems to be a better option than tablets. However, its short permanence in plasma could reduce its clinical usefulness in dogs.  相似文献   

19.
The objective of this study was to describe the pharmacokinetics (PK) of flunixin in 12 nonlactating sows following transdermal (TD) flunixin (3.33 mg/kg) and intravenous (IV; 2.20 mg/kg) flunixin meglumine (FM) administration using a crossover design with a 10‐day washout period. Blood samples were collected postadministration from sows receiving IV FM (3, 6, 10, 20, 40 min and 1, 3, 6, 12, 16, 24, 36, and 48 hr) and from sows receiving TD flunixin (10, 20, 40 min and 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60, and 72 hr). Liquid chromatography and mass spectrometry were used to determine plasma flunixin concentrations, and noncompartmental methods were used for PK analysis. The geometric mean ± SD area under the plasma concentration–time curve (AUC) following IV injection was 26,820.59 ± 9,033.88 and 511.83 ± 213.98 hr ng/ml for TD route. Mean initial plasma concentration (C0) was 26,279.70 ± 3,610.00 ng/ml, and peak concentration (Cmax) was 14.61 ± 7.85 ng/ml for IV and TD administration, respectively. The percent mean bioavailability of TD flunixin was 1.55 ± 1.00. Our results demonstrate that topical administration is not an efficient route for delivering flunixin in mature sows.  相似文献   

20.
Pharmacokinetics and pharmacodynamics of alfaxalone was performed in mallard ducks (Anas platyrhynchos) after single bolus injections of 10 mg/kg administered intramuscularly (IM; n = 10) or intravenously (IV; n = 10), in a randomized cross‐over design with a washout period between doses. Mean (±SD) Cmax following IM injection was 1.6 (±0.8) µg/ml with Tmax at 15.0 (±10.5) min. Area under the curve (AUC) was 84.66 and 104.58 min*mg/ml following IV and IM administration, respectively. Volume of distribution (VD) after IV dose was 3.0 L/kg. The mean plasma clearance after 10 mg/kg IV was 139.5 (±67.9) ml min?1 kg?1. Elimination half‐lives (mean [±SD]) were 15.0 and 16.1 (±3.0) min following IV and IM administration, respectively. Mean bioavailability at 10 mg/kg IM was 108.6%. None of the ducks achieved a sufficient anesthetic depth for invasive procedures, such as surgery, to be performed. Heart and respiratory rates measured after administration remained stable, but many ducks were hyperexcitable during recovery. Based on sedation levels and duration, alfaxalone administered at dosages of 10 mg/kg IV or IM in mallard ducks does not induce clinically acceptable anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号